Laserfiche WebLink
has' Is- <br />Z4 <br />s-Z4 3, <br />o a D <br />2114 <br />} / PC ? 3 <br />248 ;�18, /00 <br />/g <br />30 <br />44 <br />S 5 <br />- - c- <br />boy <br />LIJ <br />19 - AJ <br />� 30 VI <br />tv <br />tikes - � <br />TRIGONOMETRIC FORMULAE J <br />,1J� yrs �vA <br />,- <br />c a c -- -- a c a <br />ig� � A A C <br />b aa b <br />b <br />_Right Triangle � Oblique Triangles <br />Solution of Right Triangles <br />a b a, b c c <br />For Angle A. sin = o ,cos ,= Q , tan= b , cot = a , sec = b, cosec = <br />(liven Required <br />b A,B,c tangy=b=cotB,c= a= } _=a 1+ az <br />.,a; -a <br />a; -a A, B, b sinA=c =cos B,b(c+a)(o—a)=c�1—Qi <br />A, a B, b, c •B=90°—A, b = a cot A, c•= a <br />� sin A. <br />t <br />A, b B, a, e, B =90'—A, a = b tan A, e = b <br />cos A. <br />A, e B, a, b B = 90°—A, a = c sin A, b = e cos A. <br />Solution of Oblique Triangles <br />(liven Required <br />A, B, a b, c, C b' = a sin B � C = 180°—(A + B), c = a sin C <br />sin A sin A <br />b sin A a sin C <br />A, a, b B, c, C sin B = a , C = 180°—(A + B), c — sin A <br />a, b, C A, B, e A+B=180°— C, tans (A—B)=(a—b) tan z (A+B) <br />a+b <br />• e= <br />a sin C <br />sin A <br />a+b +c 1 = <br />a, b, c A, B, C s= 2 ,sin;A— be ' <br />in ; B= J(s—sal ) , C=180°—(A+B) <br />? a, b, a Area s = a+2 + c , area =1/s (s—a s—) (s—e <br />y bosinA <br />A, b, a Area area = 2' <br />all sin B sin C <br />A, B, C, a Area area = 2 sin A <br />' REDUCTION TO HORIZONTAL <br />s Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 tt. <br />taupe Vert. angle =5° 101. From Table, Page IX. cos 51 ID'= <br />ass 9959. Horizontal distance=319.4X.9959=318.09 ft <br />51pQp gxe N horizontal distance also=Slone distance minus slope <br />Vp . Iv a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5° 101=.9959.1—.9959=.0041• <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft.'' <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X 14 =3026-0 32=302.28 ft. <br />2 X 3026 <br />MADE IN U. S. A. <br />�F''9ii:.'i.7.5P.'d,Ti.71wn'ns;v •�.r.me.�,. -- — -_ . _. _ ._.-_.._�..�_,........d. _ <br />