Laserfiche WebLink
I <br />.ti <br />r •. <br />47I Al, O 1-,,/ 6 Vrc <br />0 <br />�. Z' <br />0 el 9, <br />30 <br />TRIGONOMETRIC--FORMULfE <br />ll o c <br />o -7 Z e <br />a a c a <br />A <br />A <br />C, �b C A b C <br />Oblique Triangles J <br />b <br />_ Right Triangle <br />Solution -of Right Triangles <br />For Angle A. sin = a ,cos = b a ,cot = b ,sec = cosec = <br />c c b b' <br />Given <br />a,b <br />Required <br />-A,B,c <br />a a <br />tanA=b=cotB,e= a2+b2=a 1 } 2 <br />L <br />a <br />Q, o <br />A., B, b <br />sin A = o =cos B, b = \/ (c 1 a) (c—a) = c � 1— a <br />A, a <br />B, b, c <br />B=90°—A, b= a cotA, c= a <br />sin A. <br />A, b <br />B, a, c <br />B =900—A, a = b tan A, c = b <br />� <br />cos A. <br />k A, c <br />B, a, b I <br />B = 900—A, a = c sin A, b = c cos A, <br />Solution of Oblique. Triangles <br />Given <br />-A, B, a <br />Requireda <br />b, c, C <br />sin B C <br />b _ <br />' C = 1800—(A + B), c = <br />_ sin A sin <br />sin A <br />A, a, b <br />B, c, C <br />b sin A <br />sin B = , 0'= 180°—(A + B),c c = a sin C <br />a sin A <br />a, b, C <br />A, B, c <br />A+ B=180°— C, tan '2 (A—B)= (a—b) tan z (A+B) <br />r � <br />` <br />> <br />a sin C + a b <br />sin A <br />I. a b c <br />> <br />A, B, C <br />s=a+b+c , I s—b)(s—c <br />,sin aA= <br />2 b, ' <br />sin ;B=—c) C.=180°—(A+B) <br />ac <br />a, b, c <br />Area <br />s.=a+2+c, area = N/8(8—a (s—b)(s—c <br />i A, b, c <br />Area <br />b c sin A <br />area = <br />2 <br />i <br />A, B, C, a <br />Area <br />a2 sin B sin C <br />area = <br />2 sin A <br />.. REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />arpe <br />ass\ <br />Vert. angle =5° 101. From Table, Page IX. cos 50 lol= <br />g\ope <br />9959. Horizontal distance=319.4X.9959=318.09 ft. <br />Horizontal distance also=Slone distance minus slope <br />-'je <br />a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance <br />ing result is obtained. Cosine 5° 10,=.9959.1—.9959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft... <br />slope distance=302.6 ft. <br />Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.28 ft. <br />2 X 302.6 <br />MADE IN U.S.A. <br />