Laserfiche WebLink
t <br />f TRIGONOMETRIC FORMUL& <br />B B B <br />c a c a c a <br />d <br />AA <br />b C�b Cb q <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. sin= a c , cos = b tan = a b c c ' b cot = a ,sec = b, cosec = <br />a <br />Given Required <br />a,b A,B,c tanA=b=cotB,c= as+ a=a 1+as <br />a <br />a, c A, A b sin A = = cos B, b = V (c+a (c—a) = c J 1— p <br />A, a B, b, c B = 90°—A, b = a cotA, c = sin A. <br />� b <br />1 ( A, b B, a, c B = 90°—A, a = b tan A, c = <br />II cos A. <br />A, c B, a, b B = 90°—A, a = c sin A, b = c cos A, <br />Solution .of 'Oblique Triangles <br />Given Required <br />A B a b, c, C b= a ein B 0_ 180°—(A + B), c� a sin C <br />sin A ' sin A <br />j1 b sin A a sin C <br />f A, a, b B, c, C sin B = a , C = 180°—(A + B), c = sin A <br />.1 <br />` cb b, C A, B, c A+B=180°-0, tan i (A—B)=(a-b) tan jL (A+B)� <br />a + b <br />— <br />a sin C <br />- <br />sin A <br />a, b, c A, B, Cs=a+2+c,sin;A= V s b <br />sin;B=ae ° ,C=180°—(A+B) <br />a, b, c Area 8=a+2+c, area = s(s—a s— )(s—c <br />A, b, c Area area = b c si A <br />} as sin B sin C <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4N, <br />tQo°e Vert. angle= 50 101. From Table, Page IX, cos b° 10t=.� <br />oPe ass CD 9959. Horizontal distance=319.4X.9959=318.09 ft <br />S, A�TT <br />�,e <br />Horizontal <br />stance timest(1-cosine ofverticalangle) 1Withlthe <br />�1e same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0011=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., ` <br />slope distance 302.6 ft. Horizontal distance=3026— 14 X 14 =302.6-0.32=30228 ft. <br />2 X 302.6 <br />MADE IN U. B. A. <br />