Laserfiche WebLink
t� 00 <br />I92 L� TRIGONOMETRIC FORMULiR <br />IG 3 3y <br />- <br />! FJ.;" <br />/. <br />//O v <br />�U �� I }'�� v <br />/ o ` \ <br />r� <br />Oq o' Vy �c-ZA <br />�`�"'� - - <br />0� jil 9 p!� v p 2.L = \. A� B a b' �' C b sin nA ' C = 180°—(A } B), c =a sin s A <br />b sin A a sin C <br />A, a, b B, c, C sinB= ,C= 180°—(A+B),c = <br />� B B <br />. <br />a { b <br />a sin C <br />c <br />a c a c a <br />.e.' <br />C <br />A�b C A � C <br />b, <br />' <br />Right Triangle <br />Oblique Triangles <br />A, b, c Area .area = bcsin A <br />2 <br />Solution of Right Triangles - <br />) <br />For Angle A, sin = � ,cos = � ,tan = b cot=—,sec= b , cosec = a <br />� <br />Given <br />a,b <br />Required <br />A,B,c <br />tanA=b=cotB,c= as-}- a=a 1+ as <br />� <br />a, e <br />'A, B, b <br />a <br />sin'A = � =cos B, b = �/ (c+a) (c—a} = c � 1— a � <br />tar°e Vert. angle =5° 101. From Table, Page IX. cos 5° 101= <br />e ass y 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />A', a <br />B, b, c <br />B=90°—A, b= a cotA, c= a <br />Vet. distance times g—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />sin A. <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />A, b <br />B, a, c <br />B=90'—A, a = b tan A, c = b <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />cos A. <br />=302. ' :slope distance=302.0 ft. Horizantal'distance=30214 X 14 6— 8-0.32=302.28 ft. <br />A, c <br />B, a, b <br />B = 90°—A, a = c sin A, b = c cos A, <br />MADE IM U. B. A. <br />Solution of Oblique- Triangles <br />Given <br />Required <br />B C <br />A, a, b B, c, C sinB= ,C= 180°—(A+B),c = <br />a sin A <br />a, b, . C A, B, c A+B=1800— C, tan 3 (A—B)= (a—b) tan ; (A+B)� <br />a { b <br />a sin C <br />c = sin A <br />a+b+c <br />�(s— <br />a, b, c A, B, C s= 2 ,sin -',A= b c ' <br />sin 3.B- J ,C=180°—(A+B) <br />a c <br />}a,+b+c <br />r <br />! a, b, c Area s = 2 ,area (s—e <br />A, b, c Area .area = bcsin A <br />2 <br />as sin B sin C <br />A, B, C, a Area area = <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />' Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />! <br />tar°e Vert. angle =5° 101. From Table, Page IX. cos 5° 101= <br />e ass y 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />gNoQ AogNe a Horizontal distance also=Slope distance minus slope <br />Vet. distance times g—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1,31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />=302. ' :slope distance=302.0 ft. Horizantal'distance=30214 X 14 6— 8-0.32=302.28 ft. <br />° 2 X 302.0 <br />MADE IM U. B. A. <br />