|
Help
|
About
|
Sign Out
Home
Browse
Search
Pg 82
DaneCounty-Planning
>
Clerical
>
Sam
>
Fricky
>
FBs
>
397 - Poynette #5
>
Pg 82
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
3/10/2025 11:36:22 AM
Creation date
3/10/2025 11:36:21 AM
Metadata
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
Page 1 of 1
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
Show annotations
View images
View plain text
n <br />3LES <br />k ESSER CO. <br />'E TABLES <br />nals to a 1° curve. Tan. and <br />y enough, by dividing the Tan. <br />y the given degree of curve. <br />central Angle and Tangent: <br />.gle by the given Tangent. <br />Dentral Angle and External: <br />gle by the given External. <br />it any angle by Table I.: Tan. <br />r the radius'bf a S° <br />curve will <br />of about 12 ft. Angie -• <br />to the R. at Station <br />20' =120.87 <br />a 10° Curve. <br />0'=1183.1 <br />31. <br />10° Cur. =0;16 . <br />:ted Tangent:` <br />.nd in same way) 1 <br />2.3333 = L. C. <br />=sta. 542-72 <br />1 . 18.47 <br />= sta. 541+53.53 <br />2 ; 33.33 <br />= Sta. 543+86.86 <br />f 10° Cur.) =139.41' = ` <br />542. <br />10° Curve. <br />)r a 10° Curve. <br />CURVE TAI <br />Published by KEUFFEL <br />HOW TO USE (URI <br />Table I. contains Tangents and Extel <br />G -A,v,- <br />2 ,47 <br />Fact. to any other radius may be found near] <br />or Ext. opposite the given Central Angle I <br />2-7-57' <br />To find Deg. of Curve, having the ( <br />Divide Tan. opposite the given Central Ai <br />To find Deg. of Curve, having'the <br />Divide Ext. opposite the given Central At <br />NSo <br />oto Ar <br />To find Nat. Tan. and Nat. Ex. Sec. f <br />or Ext. of twice the given angle divided b <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLI <br />ecu 9 <br />% `� <br />y <br />Wanted a Curve with an Ext. <br />of Intersection or I. P.=23' 20' <br />'. <br />542+72. <br />Ext. in Tab. I opposite 23` <br />_/7173'7 <br />120.87 =12 =10.07. Say <br />Tan. in Tab. I opp. 23° <br />1183.1=10 =118. <br />kir/ <br />7 <br />Correction for A. 23° 20' for ; <br />118.31+0.16 =118.47 = corre <br />(If corrected Ext. is required 1 <br />Ang. 23° 20'=23.33°=10= <br />SJT <br />�Qp,3, <br />2° 191'=def. for sta. 542 I. P. <br />iLG <br />Jp <br />404911— " " +50 Tan. <br />7° 192= 543 <br />9 492 — +50 <br />ornls5 <br />33tG , i <br />11° 40'= " " " . 54.3+ L. C. <br />86.86 E. C. <br />100-53.53=46.47X31(def, for 1 ft. < <br />2° 19V =def. for st; <br />Def. for 50 ft. =2° 30' for; <br />Def. for 36.86 ft. =1° 501' f <br />S4 <br />• 2 I.P,An9. <br />3 <br />N <br />\\e p^ _ <br />lo' Curve <br />csS3"> <br />- <br />\ <br />n <br />3LES <br />k ESSER CO. <br />'E TABLES <br />nals to a 1° curve. Tan. and <br />y enough, by dividing the Tan. <br />y the given degree of curve. <br />central Angle and Tangent: <br />.gle by the given Tangent. <br />Dentral Angle and External: <br />gle by the given External. <br />it any angle by Table I.: Tan. <br />r the radius'bf a S° <br />curve will <br />of about 12 ft. Angie -• <br />to the R. at Station <br />20' =120.87 <br />a 10° Curve. <br />0'=1183.1 <br />31. <br />10° Cur. =0;16 . <br />:ted Tangent:` <br />.nd in same way) 1 <br />2.3333 = L. C. <br />=sta. 542-72 <br />1 . 18.47 <br />= sta. 541+53.53 <br />2 ; 33.33 <br />= Sta. 543+86.86 <br />f 10° Cur.) =139.41' = ` <br />542. <br />10° Curve. <br />)r a 10° Curve. <br />
The URL can be used to link to this page
Your browser does not support the video tag.