Laserfiche WebLink
3fZs-7 <br />q 6 2G v. (' l Z -.a <br />3— <br />3 7 <br />3zS17 v$ 9 <br />od. <br />O� <br />480 <br />v 1n5 <br />4 <br />3 <br />v &o <br />7 5- <br />U <br />G�I ki I ,VV <br />O <br />�S Lr 33165 <br />11�" <br />o y <br />0. <br /><% 30f GOf51 7- <br />9�� <br />TRIGONOMETRIC FORMUL& <br />B B B <br />c a c a c a <br />A b C�� b C9. C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. sin = a , cos = o , tan = b , cot = b, sec =. b , cosec = a <br />Given Required <br />a, b A, B ,c tan A = b = cot B, a = a2 -} 2 = a 1 a2 <br />a, c A, B, b sin A = m = cos B, b = c a c—a az <br />03 <br />A, a B, b, c B=90°—A, b= a cotA, c= a <br />sin A. <br />A, b B, a, c B =90'—A, a = b tan A, c = b <br />cos A. <br />A, c . B, a, b I B = 90°—A, a = c sin A, b = c cos A,, <br />Solution of Oblique Triangles <br />Given Required a sin B in C <br />A, B, a b, c, C b sin A , C = 180°—(A + B), c = sin <br />A, a, b B, c, C sin B = b sin A , C = 1800—(A { B) a sin C <br />a , c = sin A <br />a, b, C A, B, c A+B-180°— C, ten 3 (a­b)tan 1 <br />(A—B)= a �' (A+B) <br />b , <br />a sin C <br />sin A <br />a, b, c A B C s-a+2+c,sin;A=,I(s— bc—cam <br />(,q—a)(,9­)' <br />sin,B= C=180°—(A } B) <br />ac <br />a, b, c Area s = a+2 <br />A, b, c Areab c sin A <br />area = 2 <br />as sin B sin C <br />A, B, C,a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />e a�s�a�ce y 9959. Horizontal distancem 19.4X 959= 318.09 ft Table, PaIX. cos 5° 10 <br />$1ov "e a Horizontal distance also= Slope distance minus slope <br />Ve distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 51 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft.h' <br />When the rise is known, the orizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft, <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =3026-0.32=302.28 M <br />2 X 302.6 <br />MADE IN U. 8. A. <br />,R <br />� Z.v <br />°•° v <br />0 <br />/ s �,: <br />r3 <br />Z <br />4 <br />3 <br />v &o <br />7 5- <br />U <br />G�I ki I ,VV <br />O <br />�S Lr 33165 <br />11�" <br />o y <br />0. <br /><% 30f GOf51 7- <br />9�� <br />TRIGONOMETRIC FORMUL& <br />B B B <br />c a c a c a <br />A b C�� b C9. C <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. sin = a , cos = o , tan = b , cot = b, sec =. b , cosec = a <br />Given Required <br />a, b A, B ,c tan A = b = cot B, a = a2 -} 2 = a 1 a2 <br />a, c A, B, b sin A = m = cos B, b = c a c—a az <br />03 <br />A, a B, b, c B=90°—A, b= a cotA, c= a <br />sin A. <br />A, b B, a, c B =90'—A, a = b tan A, c = b <br />cos A. <br />A, c . B, a, b I B = 90°—A, a = c sin A, b = c cos A,, <br />Solution of Oblique Triangles <br />Given Required a sin B in C <br />A, B, a b, c, C b sin A , C = 180°—(A + B), c = sin <br />A, a, b B, c, C sin B = b sin A , C = 1800—(A { B) a sin C <br />a , c = sin A <br />a, b, C A, B, c A+B-180°— C, ten 3 (a­b)tan 1 <br />(A—B)= a �' (A+B) <br />b , <br />a sin C <br />sin A <br />a, b, c A B C s-a+2+c,sin;A=,I(s— bc—cam <br />(,q—a)(,9­)' <br />sin,B= C=180°—(A } B) <br />ac <br />a, b, c Area s = a+2 <br />A, b, c Areab c sin A <br />area = 2 <br />as sin B sin C <br />A, B, C,a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />e a�s�a�ce y 9959. Horizontal distancem 19.4X 959= 318.09 ft Table, PaIX. cos 5° 10 <br />$1ov "e a Horizontal distance also= Slope distance minus slope <br />Ve distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 51 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft.h' <br />When the rise is known, the orizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft, <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =3026-0.32=302.28 M <br />2 X 302.6 <br />MADE IN U. 8. A. <br />,R <br />