Laserfiche WebLink
El <br />TRIGONOMETRIC FORMULAE <br />B B <br />a <br />a a <br />0 A <br />C <br />I Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />-a <br />For Angle A. �innc 0 a=�,cos=—b ,tan= T b cot = — ,see= cosec <br />a <br />Given Requited a � F_ 2 <br />-A B,o V"a2 + I= a IN <br />a, b tan A = C&B, a + <br />a2 <br />A, B, b sin = = coo A b =V <br />T+ aT(c <br />a, <br />A, a Al,o B=90°—A, b = a cotA, c= <br />sin A. <br />A, b Ae;, a B =90*—A, a = b tan A, e = cos A. <br />A,, B,' a, b B = 90'—A, a a sin A, b = c dos A, <br />Solution of Oblique Triangles <br />Given Req -red asin B asin C <br />A, B,'d b; 'i C b = sin A , C = 180--(A + B), c = sin A <br />b sin A a,in C <br />A, 4, b B, c,'C sinB= a , Of = 180°—(A + B), c = sin A <br />a, b, 0. A, B, c A+B=180*— 0, tan J(A—B)= (a—b) tan I (A+B) <br />+ b <br />a sin C <br />a sin A <br />j a, b, a A, B,,C 8=a+b+ JA_— <br />2,sinbe <br />a+b+ <br />aI, b, e Area S= 2+ area =N/8(8 a 8 (s —c <br />basinA <br />A, b,.c Area. area = <br />2 <br />a' sin B sin <br />Area area, = 2 sin A <br />I REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance —319-41t <br />tiQoee Vert. angle= 5Q 101. From Table, Page DL cos 51 IW= <br />.9959. Horizontal distance=319AX.9959=318.09 ft. <br />-love Horizontal distance also= Slope distance minus slope <br />e distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.0959=.0041. <br />319AX.0041=1.31. 319.4-1.31=318.09 ft. <br />When the,rise is known, the horizontal distance is approximately:—the slope dist- <br />%ince less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />.,slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.28 ft <br />2X3n6 <br />+14 MADE IN U. 8. A. <br />I <br />