Laserfiche WebLink
CURVE TABLES <br />Published by KEUFFEL $ ESSER CO. <br />Flaw TO USE CURVE TABLES <br />Table I. contains Tangents and Externals to a V curve. Tan. and <br />t. to any other radius may be found nearly enough, by dividing theTan. <br />Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />ride Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />gide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan, and Nat. Ex. Sec. for any angle by Table L: Tan. <br />Ext. of twice the given angle divided by the radius of a 1° curve will <br />the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or 1. P.=23° 20' to the R. at Station <br />542+72. <br />Ext. in Tab. I opposite 23° 20'= 120.87 <br />120.87 - 12 =10.07. Say a 10° Curve. <br />Tan, in Tab. I opp. 23' 20'= 1183.1 <br />1183.1 +10 =118.31. <br />Correction for A. 23' 20' for a 1.0° Cur. =0.16 <br />118.31+0.16 =118.47 = corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang. 23° 20'=23.33'=10=23333=1— C. <br />2' 19 J'= def. for sta. 542 I. P.=sta. 542+72 <br />V49j'= " °' " x-50 Tan.= 1 .18.47 <br />7` 19#'= " e 543 <br />9` 491'= " +50 B C. =sta. 541+53-53 <br />53.53 <br />11 ° 40' = " 7° 543+ L. C. = 2 .33.33 <br />86.86 E. C. = Sta. iZ+86.86 <br />100-53.53=46.47X3'(def. for 1 ft. of 10' Cur.)=139.41'= <br />2° 19-j'=def, for sta. 542. <br />Def. for 50 ft. =2° 30' for a 10° Curve. <br />Def. for 36.86 ft. =1' 50j' for a 10° Curve. <br />a <br />fil <br />CURVE TABLES <br />Published by KEUFFEL $ ESSER CO. <br />Flaw TO USE CURVE TABLES <br />Table I. contains Tangents and Externals to a V curve. Tan. and <br />t. to any other radius may be found nearly enough, by dividing theTan. <br />Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />ride Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />gide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan, and Nat. Ex. Sec. for any angle by Table L: Tan. <br />Ext. of twice the given angle divided by the radius of a 1° curve will <br />the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or 1. P.=23° 20' to the R. at Station <br />542+72. <br />Ext. in Tab. I opposite 23° 20'= 120.87 <br />120.87 - 12 =10.07. Say a 10° Curve. <br />Tan, in Tab. I opp. 23' 20'= 1183.1 <br />1183.1 +10 =118.31. <br />Correction for A. 23' 20' for a 1.0° Cur. =0.16 <br />118.31+0.16 =118.47 = corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang. 23° 20'=23.33'=10=23333=1— C. <br />2' 19 J'= def. for sta. 542 I. P.=sta. 542+72 <br />V49j'= " °' " x-50 Tan.= 1 .18.47 <br />7` 19#'= " e 543 <br />9` 491'= " +50 B C. =sta. 541+53-53 <br />53.53 <br />11 ° 40' = " 7° 543+ L. C. = 2 .33.33 <br />86.86 E. C. = Sta. iZ+86.86 <br />100-53.53=46.47X3'(def. for 1 ft. of 10' Cur.)=139.41'= <br />2° 19-j'=def, for sta. 542. <br />Def. for 50 ft. =2° 30' for a 10° Curve. <br />Def. for 36.86 ft. =1' 50j' for a 10° Curve. <br />a <br />