Laserfiche WebLink
IM M <br />(TRIGONOMETRIC FORMULtE <br />a e a <br />b A�rb c A b } <br />Right Triangle Oblique Triangles ——J <br />Solution of Right Triangles <br />a b a b c a <br />For Angle A. si = i o` , cos — o , tan = b , cot = a , sec = b , cosec = <br />a <br />Given Required <br />a, b A, B ,c tan A — b = cot B, e = a$ + x = a 1 } as <br />a, a A, B, b, Bin A = = cos B, b = c a c—a ¢r <br />C t%(=a i-- a, <br />A, a B, b, c� 1 B=90°—A, b = a cotA, c= sin A. <br />fw b <br />A, b B, a, c B =90P—A, a = b tan A, c — cos A. <br />A, c B, a,' b B = 90°—A, a = c sin A, b= e cos A, <br />Solution of Oblique Triangles <br />Given Required a sin B a ein O <br />A, B, a b, A ' C 180°—(A + B). e = sin A <br />A. a, b B, c, 1 C' Bio B = a b Bin A, C — 180°—(A f B), c = a ein C <br />sin A <br />I; <br />a, b, C A, B, c A+B=180°— C, tan } (A—B)= (a—b) tan <br />+ (A+B) <br />a sin C <br />7' o Bin A <br />a, b, a A, B,iC s=a+2+aysin j — FE -77(l — <br />Ias+b+e <br />a, b, c Area 8— 2 , area <br />A, b, a Area area = b o Bin A <br />2 <br />A, B, C, a Area area = at sin B sin C <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied bythe <br />cosine of the vertical angle. Thus: slope distance =918.4 ft. <br />woe Vert. angle= 5a ld. From Table, Page IX. cos 51 10/= <br />m 9959. Horizontal distance=919.4X.9959=918.09 ft. <br />�aqW Horizontal distance also= Slope distance minus slope <br />ope ��' <br />distance times (1—cosine of vertical angle). With the <br />1, Ve same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 51 101=.9959. 1—.9959=.004L <br />9114X.0041=1.91. 319.4-1.31=31909 ft. <br />When the rise Is known, the horizontal distanee is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft., <br />slope distance=302.8 ft. Horizontal distance=3026--14X14=3M".32=3M28 ft. <br />2X9028 <br />1 <br />