Laserfiche WebLink
f;T <br />CURVE. TABLES <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES <br />Table I: contains Tangents and Externals to a I° curve. Tan. and <br />` to any other radius maybe found nearly enough, by dividing the Tan. <br />Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central, Angle and Tangent: <br />ride Tan_ opposite the given Central Angle by the given Tangent. <br />e ` <br />To find Deg. of Curve, having the Central Angle and External: <br />Fide Ext.. opposite the given' Central Angle by the'given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />Ext. of twice'the given angle divided by the radius of a 1° curve will <br />the Nat. Tan. or Nat. Ex. See.' " <br />EXAMPLE <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersecfion .or I. P–=23' 20' to the R. at Station <br />542+72. <br />Ext. in Tab. I opposite 231 20' =120.87 <br />s <br />120.87-:-12=10.07. Say a' 10° Curve. <br />Tan. in Tab. Copp. 23° 20'=1183.1 <br />1183.1=10=118.31. <br />Correction for A. 23° 20' for a 10° Cur. =0.16 <br />t <br />H <br />r <br />(If corrected Ext: is required find in same way) <br />)r <br />_ <br />2. 191, def. for sta. 542 LP. =sta. 542 } 72 <br />1 <br />4° 4911,= " +S0 Tan. = <br />7° 1911– a a a 543 <br />– - <br />643 S. C. =sta. 541 53.53 - <br />9- 49, " <br />L. C. = 2 .33.33 <br />4 <br />11* 40'= " " 543++50 <br />'86:86 E. C. =Sta. ' 543+86.86 <br />100-53:53=46.47X3'(def. for 1 ft. of 10° Cur.) =139.41'.'= <br />C <br />2° 193'=def: for'sta. 542. <br />Def. for 50 ft. =2* 30' for a 10° Curve. <br />Def. for 36.86 ft. =1° 50;' for a 10° Curve, <br />,a <br />- <br />• <br />io'�itu'va` " <br />r 1 r` <br />IR1;17, <br />I <br />— <br />I,�I� <br />(�f <br />rte" • <br />,I <br />,_�.'�G",�� <br />A�_- <br />_-_ <br />. Y <br />s <br />, <br />lL� <br />yu <br />• <br />f;T <br />CURVE. TABLES <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES <br />Table I: contains Tangents and Externals to a I° curve. Tan. and <br />` to any other radius maybe found nearly enough, by dividing the Tan. <br />Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central, Angle and Tangent: <br />ride Tan_ opposite the given Central Angle by the given Tangent. <br />e ` <br />To find Deg. of Curve, having the Central Angle and External: <br />Fide Ext.. opposite the given' Central Angle by the'given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />Ext. of twice'the given angle divided by the radius of a 1° curve will <br />the Nat. Tan. or Nat. Ex. See.' " <br />EXAMPLE <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersecfion .or I. P–=23' 20' to the R. at Station <br />542+72. <br />Ext. in Tab. I opposite 231 20' =120.87 <br />s <br />120.87-:-12=10.07. Say a' 10° Curve. <br />Tan. in Tab. Copp. 23° 20'=1183.1 <br />1183.1=10=118.31. <br />Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118.31+0:16 118.47 =corrected Tangent. - <br />(If corrected Ext: is required find in same way) <br />Ang.23°20'=23.33°=10=2.3333=L. C. <br />2. 191, def. for sta. 542 LP. =sta. 542 } 72 <br />1 <br />4° 4911,= " +S0 Tan. = <br />7° 1911– a a a 543 <br />– - <br />643 S. C. =sta. 541 53.53 - <br />9- 49, " <br />L. C. = 2 .33.33 <br />4 <br />11* 40'= " " 543++50 <br />'86:86 E. C. =Sta. ' 543+86.86 <br />100-53:53=46.47X3'(def. for 1 ft. of 10° Cur.) =139.41'.'= <br />; <br />2° 193'=def: for'sta. 542. <br />Def. for 50 ft. =2* 30' for a 10° Curve. <br />Def. for 36.86 ft. =1° 50;' for a 10° Curve, <br />,a <br />- <br />• <br />io'�itu'va` " <br />