Laserfiche WebLink
VIII <br />TABLE IL - Radii, Ordinates and Deflection. Chord =100 ft. <br />Dom''RadianOrd. <br />Radius <br />50 <br />11id. <br />Tea <br />Dist. <br />Def. <br />Dist. <br />De' <br />1fotr <br />Deg. <br />Radius <br />Med. <br />Did. <br />Tau <br />Dist. <br />Def, <br />Dist. <br />Def. <br />if r <br />0'10' <br />t. <br />34377. <br />'.036 <br />- <br />.145 <br />.291 <br />0.05 <br />71 <br />t. <br />819.0 <br />1.52$ <br />t. <br />6:105 <br />t., <br />12.21 <br />2.10 <br />20 <br />17189. <br />.073 <br />.291 <br />.582 <br />0 10 <br />20' <br />781.8 <br />1.600 <br />6;395 <br />12,79 <br />2.20 <br />'30 <br />11459. <br />109 <br />.436 <br />' .873 <br />0 1; <br />30 <br />764.5 <br />1. .637 <br />6.540 <br />13 08 <br />2.2; <br />40- <br />-Sri91.4 <br />.145 <br />.582 <br />;1'.164 <br />0.20 <br />40. <br />747.9 <br />1.673 <br />6.685 <br />t3 37 <br />2.30 <br />50 <br />6879.5 <br />..182 <br />-.727 <br />1.454 <br />0 23; <br />8 <br />716.8 <br />1:746 <br />6.976'13:9 <br />5' 36' <br />2.60 <br />1 <br />;720.6 <br />•.218 <br />.873 <br />1.745 <br />0.30 <br />20 <br />688.2 <br />1.819 <br />7.260 <br />14.53 <br />2.5.0 <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7, <br />1.855 <br />7.411 <br />14.82 <br />2,55 <br />20 <br />-4297.5 <br />.291 <br />1,164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15.11 <br />2.60 <br />,301 <br />3810.8 <br />-.327 <br />1.309 <br />2.618 <br />0.45 -. <br />9 <br />637.3,1.965 <br />3°35' <br />7.840 <br />15.69 <br />2.70 <br />40 <br />3437.9 <br />,.364 <br />1.454 <br />-2.909 <br />0.50 <br />.•" 20 <br />614.6 <br />2.037 <br />8.136 <br />16.27 <br />2-80 <br />50- <br />3125.4 <br />- .400 <br />t.600 <br />3.200 <br />0.55, <br />30 <br />603.8 <br />2.074 <br />8.281 <br />16.56 <br />2.85 <br />2. <br />2364.9 <br />.4313 <br />1.745 <br />13.400 <br />0.60 <br />40 <br />593.4 <br />2.110. <br />8:426 <br />16.85 <br />2.90 <br />10 <br />2644.6 <br />.473 <br />1.891 <br />:3.781 <br />0.65 <br />19 <br />573.7 <br />2.183 <br />8.716 <br />17.43 <br />3:00 <br />20 <br />2155.7 <br />.509 <br />2.036 <br />-4:072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />'9.150 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2,181 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2148.5 <br />,'.582 <br />2,327 <br />_4.363 <br />4.651 <br />0.80 <br />' 30 <br />499.1 <br />2.511 <br />10:02 <br />20.04 <br />3.45 <br />50. <br />2022.4 <br />.618 <br />2.472 <br />'4.945 <br />0.85. <br />12 <br />478.3'2.620 <br />10.45 <br />20.91 <br />3 -GO <br />S. ° <br />1910.1 <br />.655 <br />2.618 <br />5.235 <br />0.90 <br />30 <br />459.3 <br />2.730 <br />10.89' <br />21.77 <br />3.75 <br />10. <br />1809.6 <br />'.691 <br />2.763 <br />5.526 <br />0.05 <br />13 <br />441.7 <br />2.889 <br />11.32 <br />22. 64 <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 <br />30 <br />425.4 <br />2.,940 <br />11:75 <br />23.51 <br />4.Qa <br />30 <br />1637.3 <br />.704 <br />3.054 <br />6'..108 <br />I.o5 ' <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />-.800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.2'3.168 <br />12.02 <br />25.24 <br />4.35 <br />50 <br />1495..0 <br />.836 <br />3.345 <br />G.680 <br />1.15 <br />15 <br />383.1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />4 <br />1432.7 <br />--.873 <br />3.490 <br />/G.980 <br />1.20' <br />30, <br />370.8 <br />3.387 <br />13.49 <br />26.97 <br />4.65 <br />10. <br />1375.4 <br />-..909 <br />3.635 <br />17.271 <br />1.25 <br />16 <br />359.3 <br />3.496 <br />13.92 <br />27.84 <br />4.80 <br />20_ <br />'1322.5,'..945 <br />3.718 <br />7.5611 <br />1:30 <br />30 <br />348.'5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30. <br />1273.6 <br />. .982 <br />3.926 <br />7.852 <br />1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />,40 <br />1228'.1' <br />1.018 <br />4.071 <br />8._1431.40 <br />- <br />319.6 <br />3-935 <br />15.64 <br />31.295.40 <br />50 <br />11S5.8'1.055 <br />4.217 <br />'8.433 <br />1.45 <br />.18 <br />10 <br />302.9 <br />,155 <br />16:51 <br />33.01 <br />5,70 <br />5 <br />1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />211 <br />287.9'4.374 <br />17.37 <br />34.73 <br />6.00 <br />10 <br />.1109.3 <br />1.127 <br />4.607 <br />9.014 <br />1.55 <br />21 <br />274:4 <br />4,594 <br />18.22 <br />36.44 <br />6.30 <br />20.- <br />1074,7 <br />1.164 <br />4.653 <br />,9.305 <br />1.60 <br />'22 <br />262-0 <br />4,814 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />1042,1 <br />1.200 <br />4.798 <br />0.590 <br />1.65 „ <br />23 <br />250.8'5:035.19.94 <br />30.87 <br />6.90 <br />.40 <br />1011.5 <br />1,237 <br />4.943 <br />9.880 <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20-79 <br />41.58 <br />7.20 <br />50 <br />082.6 <br />1.273 <br />5.088 <br />10.18 <br />1.75 <br />25 <br />231.0 <br />5.476 <br />21.'64. <br />43.28 <br />7.50 <br />tl <br />955.4 <br />1.300 <br />5.234 <br />10.47 <br />1.80 <br />26 <br />222.3 <br />5.697 <br />22.50 <br />44.99 <br />7.80 <br />t0 <br />929.6 <br />1.346 <br />5.379 <br />10.70 <br />1.85 <br />27 <br />214.2 <br />5.918 <br />23.35 <br />46.69 <br />8.10 <br />20 <br />905.1.1.382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />206.7 <br />6.139 <br />24.19 <br />48.38 <br />8.40 <br />30 <br />881.9 <br />1.418 <br />5.669 <br />11-34 <br />1.95 <br />29 <br />199.7 <br />6.300 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />859.9 <br />1.455 <br />5.814 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.!8 <br />51.76 <br />9.00 <br />The middle ordinaW 'n incites for any cord of length (C) is equal to .0012 C' <br />J multiplied by the nlidd�o ordinate taken from the above table. Thus, if it <br />l desired to bend a 30 ft. rail to fits, ]0 degree curve, its middle ordinate should <br />be ,0012X000X2.183 or 2.36 inches. <br />TABLE III. 'Deflections for Sub Chords for short Radius Curve& <br />Degree' <br />of <br />Curve <br />Radius <br />50 <br />V2 sub chord <br />R =sin of }def. angle ' <br />Len th <br />of arc <br />_for 100 ft. <br />sin. ¢ def. ang. <br />12.5 Ft, <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />300 <br />193.18 <br />1° j1' <br />2° 17' <br />2° 58' <br />30 43' <br />101.15 <br />32° <br />181.39 <br />10 59' <br />20 25' <br />3° 10' <br />3°.58' <br />101.33 <br />34° <br />171.01 <br />2° o6' <br />2° 33' <br />3° 21' <br />4° 12' <br />101.48 <br />36° <br />161.8o <br />2° 13 <br />2° 41` <br />3° 3'3' <br />4° 26'. <br />101.66 <br />38° <br />153.58 <br />2° 20' <br />2° 49' <br />3° 44` <br />4° 40' <br />101.85 <br />40° _ <br />146. 19 <br />2° 27' <br />2° 57' <br />30 55` <br />4° 54, <br />-ib2.o6 <br />42°139..52 <br />25 <br />2° 34' <br />3° 05' <br />. 4° 07' <br />9'.08 <br />102.29 <br />44° i <br />133:47 <br />2° 41' <br />3° 13' <br />4° 18' <br />5''22' <br />102.53 <br />460 <br />127.97 <br />2-48 <br />3° 21' <br />4° 29' <br />5' 36' <br />102.76 <br />48° <br />122.92 <br />2° 55 <br />3° 29, <br />4° 40' <br />51 5o' <br />103.©0 <br />50° <br />118.31 <br />30 02'3° <br />38' <br />4° 51' <br />6' 04' <br />103.24 <br />520 <br />1i4.06 <br />3° 09' <br />3° 46' <br />3° 02' <br />6° 17' <br />103.54 <br />54°110.11 <br />58 <br />3° 16' <br />3° 54' <br />-5° 13' . <br />6-31, <br />103 , 84 <br />56° <br />106.50 <br />3° 22' <br />4° 02' <br />S° 23' <br />6° 44' <br />104.14 <br />58' <br />t0,3. 14 <br />3° 29' <br />4' to' <br />50 34' <br />6°.57', <br />104-43 <br />6o° <br />100.00 <br />3°35' <br />4°18' <br />5°44 <br />7°I1' <br />104.72 <br />]!]C <br />CURVE FORMULAS <br />I`. T 5tan 2I R - T cot. s I Chord def. Chord' <br />S _ <br />J- R T 50 <br />a Sin. 1,D 0 Sin. I D No. chards = I <br />2.E= R ex. sec 4 1 D <br />1 a'D 5o tan .z <br />Sin. I 1 Tan. clef. = a chord def. <br />= 1. E _ '1' tan 1 <br />The square of any distance, divided by twice the radius, will equal <br />the distance from of, <br />to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule 1.. Multiply the given distance by .01745 -(def. for I° for I ft. <br />see Table If.),.and divide given deflection by the product. <br />Rule 2. Multiply given deflection by j7.3, and divide the product by <br />tlic given distance. <br />To'find deflection for a given angle and distance. Multiply the angle <br />by .oi745, and the product by the distance. <br />GENERAL, DATA <br />RIGHT ANGLE TRIANGLES. Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Given Base too, Alt. 10.][02 -200=.5. 100-.5=100.5 hy'p. <br />Given fly -p. too, Alt. 25.252=200=3.125. 100 -3.125=96.875= -Base. <br />Error in first example, .002; in last, .645. <br />To. find Tons of Rail in one mile of track: multiply weight per yard <br />by 1 I, and divide by 7. <br />LEvBl,1NG. " The correction for curvature and refraction, in feet <br />and decimals of feet is equal to 0.574d2, where d is the distance in miles. <br />The correction for curvature alnne is closely,, ad'. The combined cor- <br />rection is negative. <br />' PROVABLE ERROR.. Ifdl, d2, d3,' etc. are.the discrepancies of various <br />results -from the mean, and if Ed'=the.sum of the squares of these differ- <br />ences and nTthe.number of observations, then the probable error of the <br />mean= Edz. <br />-0.6745: it(n-I) <br />5501.4E EPHEMERIs. Attention is called to the Solar Ephemeris for <br />the current year, published by Keuffel & Esser Co.; and furnished upon <br />request.. This handy booklet, 3''x6 in., has about 160 pages of data very <br />useful fo the Surveyor; such as the adjustments of transits, levels and solar <br />attachments; directions and tables for determining the meridian and the <br />latitude from observations on the sun and Polaris; stadia measurements; <br />magnetic, declination; arithmetic constants, etc. <br />TABLE IV. -Minutes in Decimals of a Degree. <br />11 <br />.0167 <br />11' <br />.1833 <br />21' <br />.3500 <br />311 <br />5167 <br />41f <br />.6833 <br />511 <br />.8500 <br />2 <br />.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />.8667 <br />3 <br />.0500 <br />13 <br />.2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7t67 <br />53 <br />.8833 <br />4 <br />.0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5GG7 <br />44 <br />.7333 <br />54 <br />9000 <br />5 <br />.0833 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.5833 <br />45 <br />.7.500 <br />55 <br />.9167 <br />6 <br />'.1000 <br />16.2667 <br />26 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />56 <br />.0333 <br />7 <br />.1167 <br />17 <br />2833 <br />27 <br />.4500 <br />37 <br />.6167 <br />47 <br />.7833 <br />57 <br />.9.500 <br />8 <br />.1333 <br />18 <br />.3000 <br />28 <br />.4667 <br />38 <br />.6333 <br />48 <br />.8000 <br />58 <br />.9667 <br />9 <br />.1500 <br />19 <br />.3167 <br />29 <br />.4833 <br />39 <br />.6500 <br />49 <br />.8167 <br />59 <br />.9833 <br />10 <br />:1667 <br />20 <br />:3333 <br />30 <br />5000 <br />40 <br />.6667 <br />50 <br />.8333 <br />60 <br />1.0000 <br />TABLE V. <br />-Inches in Decimals of a Foot. <br />1-16 <br />3-323-16 <br />% <br />5-16 <br />y <br />?e <br />is <br />.0052 <br />-0078 <br />.0104 <br />.01,56 <br />.0208 <br />.0260 <br />.0313 <br />.0417 <br />.0521 <br />.0625 <br />0729 <br />I <br />� <br />I � <br />� <br />I <br />_ -0833 <br />.1667 <br />.2500 <br />1833 <br />.41'67 <br />.5000 <br />.5833 <br />.6667 <br />.7500 <br />.8333 <br />4167 <br />