Laserfiche WebLink
- <br />TA131M IL - Radii, Ordinates and Deflection. Chord ®100 ft. <br />--- <br />D°6• <br />- <br />Iiadwe <br />-- <br />Mid <br />Ord.' <br />Tan <br />Dist. <br />Def. <br />Dist.-,'ifFt. <br />,15 Ft. <br />Wig., <br />Radius.. <br />Mid <br />Ord. <br />Tsn <br />Dist,. <br />Def. <br />Diet. <br />Def. <br />I(or <br />Ft. <br />2° 58' <br />3° 43'.... <br />io1.15 <br />32 <br />181.39 <br />1 59 <br />2 25 <br />t. <br />ft. <br />ft.. <br />-ft. <br />L 1.01 <br />7 <br />0.10, <br />34 377. <br />'.036 <br />.1'45 <br />.291 <br />0.05 <br />0' <br />819.0 <br />1.528 <br />,6:105 <br />12.21 <br />2.10 <br />20"17181 <br />153•_58 <br />'.073:436', <br />291 <br />.,.582 <br />0.10 <br />20, <br />781.8 <br />1.800' <br />6.395'12.79 <br />2°-57' <br />2.20 <br />:'30 <br />11459. <br />.109 <br />.436.873 <br />2° 34',- <br />0.15 <br />30 <br />764.5 <br />1.637 <br />.;6.540 <br />13.08 <br />2.25 <br />'40 i <br />8591.4 <br />.145 <br />' .582 <br />`1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />,6.685 <br />13.37 <br />2.30 <br />50 <br />6875.5 <br />:.188' <br />.727 <br />1.454 <br />0.25 <br />8716.8 <br />118.31 <br />L.746 <br />6.976 <br />13.95 <br />2.40 <br />1 ' <br />5729.6 <br />' .218 <br />.873 <br />1.745 <br />0.30 <br />20 <br />688.2,1.819 <br />54° <br />7:266 <br />14.53 <br />2.M <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855 <br />4.411 <br />14.82 <br />2.55 <br />20 <br />"4297:3;`.291 <br />5° 34 <br />1:164 <br />2.327 <br />0.40 <br />40 <br />661:7 <br />1:892 <br />7.556 <br />15.11 <br />2'.60 <br />30' <br />3819.8 <br />.327 <br />1.300 <br />2.618 <br />0.45 <br />9 - <br />637.3 <br />1.965 <br />:7:846 <br />15:69 <br />2.70 <br />90 <br />3437.9 <br />.364 <br />1.454 <br />2.909 <br />0.50 <br />" 20 <br />614.6 <br />2.037 <br />'8:136 <br />16.27 <br />2.80 <br />50 <br />3125.4 <br />.400 <br />1.600 <br />3.200 <br />0.55 <br />30 <br />603.8 <br />2.074 <br />8:281 <br />16.56 <br />2.85 <br />2 <br />2864:9 <br />.435 <br />1.745 <br />0.60 <br />40 <br />593-4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />.10 <br />2G44:6 <br />.473 <br />1.891 <br />,3:490 <br />3.781 <br />0.65. <br />10 <br />573.7 <br />2,183 <br />8.716 <br />17.43 <br />3.00 <br />20 <br />2455.7 <br />.509 <br />2.03 6 <br />4.072 <br />0'.70 <br />30 <br />546.4 <br />2',292 <br />9.150 <br />18.30 <br />3.1.1 <br />30 <br />' 2292.0 <br />,.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2148:8 <br />.582 <br />2.327 <br />4.654 <br />0.85 <br />'.30 <br />499:1 <br />2,511 <br />10:02 .20.04 <br />3.45 <br />50' <br />2022.4, <br />.618 <br />2.472 <br />4.945 <br />0.85: <br />.12 ' .478.3 <br />2:620'10:45 <br />.20.91 <br />3.60 <br />31910.1 <br />.655 <br />2.618 <br />'5.235 <br />0.00' <br />30 <br />459.3 <br />2.730 <br />10.89, <br />21.77 <br />3.75 <br />!:10 <br />1809.6 <br />.691 <br />2.763 <br />5.526 <br />0.05 <br />13 ° <br />441.7,2.839 <br />11.32. <br />22.64 <br />3.00 <br />20- <br />1719.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 <br />30 <br />42554,2.949 <br />11.75 <br />23..51 <br />4.05 <br />30 <br />1637.3 <br />.764 <br />3.054 <br />6.108 <br />1.05.. <br />14 ..: <br />410.3. <br />.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.21.594 <br />.168 <br />12.62 <br />25.24 <br />4.35 <br />60 <br />1495:0 <br />;.836 <br />3.345 <br />6.689'1'.15 <br />15 <br />383.1.277 <br />13.05 '26.11 <br />4.50 <br />4... <br />1432.7 <br />.873 <br />3.490 <br />6.980 <br />1.20 <br />30 <br />370:8.387 <br />13:49 <br />26.97 <br />4.65 <br />10, <br />1375.4 <br />.909 <br />3.635 <br />7.271 <br />1.25 <br />10' '; <br />359.3A96 <br />13,92.'27.84 <br />4.80 <br />20, <br />1322.5 <br />.945 <br />3:718 <br />7..561 <br />1.30-- <br />30.348.5:606 <br />14.35 <br />28.70 <br />4.95 <br />`30--1273.6' <br />.982 <br />3.926 <br />7.852 <br />1.85 <br />'17 <br />338`.3.716 <br />14:78 .29.56 <br />5.10 <br />40' <br />1228.1 <br />1.0184.071 <br />8.143 <br />1.40 <br />18 ` <br />319.6.935 <br />15:64 <br />31.29 <br />5.40 <br />50' <br />1185.8 <br />1.055.4.217. <br />8.433 <br />1.45- <br />18 <br />302.9.155 <br />16.51- <br />33:01 <br />5,70 <br />8 <br />1146,3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9.374 <br />17.37' <br />34.73 <br />6.00 <br />10;!•1109.3 <br />1.127 <br />4.507 <br />9.014 <br />1.55 <br />21 <br />27.1.4 <br />18.22 <br />36:44 <br />6.30 <br />20 <br />' 1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1:60 <br />22 r <br />262.0 <br />4.814 <br />19.08, <br />38.16 <br />6.60 <br />30, <br />1042.1 <br />1.200 <br />4.798 <br />9.596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />.40, <br />,1011.5 <br />1.237.4:043 <br />0.886 <br />1:70 <br />.24 <br />240.5 <br />5.255 <br />20.'79 - <br />41.58 <br />7.1'0 <br />50 <br />982.6 <br />1.273 <br />5.088 <br />10.18 <br />1.75' <br />-25 <br />231.0 <br />5.476 <br />21:64 <br />43.28 <br />7-50 <br />6 <br />.955.-4 <br />1:309 <br />5.234 <br />10,47 <br />1.80 <br />26 r <br />222.3 <br />5.697 <br />22.50 <br />44:99 <br />7.80 <br />10 <br />.929.6 <br />1,346 <br />5.879 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.918 <br />23.35' <br />46,69 <br />8.10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28, <br />206.7 <br />6.139 <br />24.19 <br />48.38 <br />8.40 <br />30 <br />881.91.418 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.7 <br />6.360 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />859.9'1:455 <br />5.814 <br />11.63 <br />2.00 <br />30:, <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />Thomiddle ordinate 'n inches for nay cord of length (0) is equal to .0012 W <br />multiplied by the midd a ordinate taken, from the above table. Thus, if it <br />desired to bends 30 ft. rail to fits 20 degree curve, its middle ordinate should <br />be .0012X900X2.183 or 2.36 inlehes. <br />Tmii E TIL "Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />; Radius <br />50 <br />sin.; def. ang. <br />M sub chord - sin of z defangle <br />R . <br />-Length <br />of arc <br />for 100 it. <br />, 123 Ft. <br />,15 Ft. <br />20 Ft.. <br />23 Ft. <br />30° <br />193.18 <br />1° 51r <br />2° 17' <br />2° 58' <br />3° 43'.... <br />io1.15 <br />32 <br />181.39 <br />1 59 <br />2 25 <br />3 Iol- <br />58'. <br />101. 33 <br />° <br />34 <br />L 1.01 <br />7 <br />2° 06' <br />2° ' <br />33 <br />o ' <br />3 z1 <br />o , <br />¢,1z <br />101.48 <br />36° <br />"161.80 <br />.z°13'-. <br />z�41', <br />3°33'' <br />- 4°:26'..-: <br />Joi.66 <br />380'_ <br />153•_58 <br />2° 20'--2` <br />49± -- <br />--3°-44'x <br />4° 40 <br />.101.85 <br />40° . <br />146: iq <br />2° 27 <br />2°-57' <br />30 55' <br />4° 51 <br />io2:o6 <br />-42° <br />_ 139.52 . <br />2° 34',- <br />3° 65' . <br />4° 07' <br />S° 08; <br />162:29 <br />44`. <br />',133-:47 . <br />2° 41' <br />3' 13' <br />4° 18' <br />S° 22'- <br />102.53 <br />46° ' <br />t27, 97 <br />2° 48' <br />3° 21' <br />4° 29 <br />5° 36' <br />102.76 <br />148° <br />122.92 <br />2° 55' <br />3° 29' <br />0' <br />4° 40'- <br />5° so'_, <br />r03.00 <br />500. <br />118.31 <br />3° 02' <br />3° 38' <br />4° 51' <br />6° 04' <br />10 <br />103.24 <br />52° <br />114.o6) <br />3° 09' <br />3° 46' <br />5° 02 <br />6° 17' <br />1b3-54 <br />54° <br />110. I I; . <br />. 3° 16' <br />3° 54' <br />5° 13' , <br />6° 31' <br />,103.84 <br />56° <br />io6. 501 <br />3° 22' <br />4° 02' <br />5° 23 <br />6° 44 <br />104.1'4 <br />58° <br />k13: 14 <br />3° 29' <br />40 lo', <br />5° 34 <br />6° 57' <br />104-43 <br />60° <br />100.00. <br />3°35'' <br />4°1s' <br />S' 44' <br />7°i1' <br />)04.72 <br />CURVE'FORMULAS. Ix <br />T- R tan 2 i R=_ T cots f, chord; <br />T - .So tan x i 50 Chord def.•= R <br />R= <br />5 <br />Sin 1"D - Sin. 7D0. I <br />° R E'= R ex.'sec 1 No. chords =.D <br />go tan <br />Sin: ' I <br />S. D - 1, E = T tan I I Tan. def. = ; chord def. <br />The square of -any distance, divided by twice the radius; will equal <br />the,distance.from tangent to curve, very nearly. <br />To find'angle for a -given distance and deflection, <br />Rule, I.- Multiply the.given distance by .0r745 .(def. for 1° for 1 ft. <br />see,Table 1I.), and divide given deflection. by the product. <br />Rule 2: . Multiply given deflection by 57.3, and-divide'the prgduct by <br />the given distance. <br />To find defleetion_for a given angle and disiance.''Mu'Itiply.fhe angle <br />•by .oi.745, and. the product by the distance. <br />GENERAL DATA <br />RIGLIT ANGLE TRIANGLES. Square the altitude,'divide.by--twice the <br />base. Add gliotient.to.base for hypotenuse. <br />,Given'Base 1oo,.Alt. 10.102=200-.5. 100-•.5=10M. .11y1) - <br />Given -Hyp. <br />hyl1.Given-Hyp. too, Alt. .25.252=2010=3.125. 100.-3.12 96:875=13ase. <br />Error in first .example, .hoz; in Iasi, :045: <br />To find Tons of- Rail in one mile of track: niultiply. weight' lier. yard <br />by' 1 i, and divide by 7:. ` <br />'LEVELING. The correction -for .curvature ands refraction, in feet <br />and decimals of feet is equal to 0.574d2, where d.is the distance in'niiles. <br />The correction for curvature -alone is closely, 2d?. The combined cor- <br />-rection.is negative. <br />-' PROSABLP, ERROR.- If d1,.d2, da, etc. are the discrepancies' of various <br />results, from the mean, and if Eda=the sum of the squares of these differ- <br />ehces and n --the number of observations, then the probable,error of the <br />meant =. I:d 2 <br />X0.6745 7(n-1) <br />SOLAR EPHEMERIS. Attention is called to the Solar Ephemeris for <br />the current year, published by Keuffel & F..sser Co.,.and furnished upon <br />request.: This handy booklet; 3ax6 in., has about 190 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and solar <br />attachments; directions and tables for determining the meridian and the <br />latitude from observations on the sun and Polaris; stadia measurements; <br />magnetic declination; arithmetic constants, etc. <br />TABLE IV. -Minutes in Decimals of a Dearee. <br />1f <br />.0167 <br />.11t,.--.1833 <br />21/-.-.3500 <br />1-16 3-32 <br />31t. <br />.5167 <br />41f <br />.6833 <br />51/ <br />.8500 <br />2 <br />.0333 <br />12 <br />.2000 <br />22 - <br />.3667 <br />32 <br />.5333 <br />42 <br />..7000 <br />52 <br />.8667 <br />3' <br />.0500 <br />13 <br />.2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4 <br />:0667 <br />14 <br />.2333 <br />24 <br />-4000 <br />34. <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />5 <br />.0833 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.6833 <br />45- <br />.7300 <br />55 <br />.0167 <br />'6 <br />,1000 <br />16.2667 <br />26 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />56 <br />.9333 <br />"7- <br />.116 7 <br />. 17 <br />.2833. <br />27 - <br />AMO <br />37 <br />.6167' <br />47 <br />.7833 <br />" 57 <br />.9500- <br />6 <br />.I333 <br />19 <br />.3000 <br />28 <br />'.4667 <br />38 <br />.6333 <br />48 <br />SOOO <br />59 <br />9667 <br />91500 <br />i9 • <br />.3I67 <br />29 . <br />.4833 <br />39 <br />.6500 <br />49 <br />,8167 <br />59 <br />.9833 <br />10 <br />.1667 <br />20 <br />.3333 <br />30 <br />.5000 <br />40. <br />-6667 <br />60 <br />.8333 <br />60 <br />LOOM) <br />-- -i- <br />-TAR1•F i', <br />Inches in Decimals of a Foot. <br />} <br />1-16 3-32 <br />3=16' <br />�•j <br />5-16 <br />36 <br />% <br />se <br />:n <br />'b <br />.0052 0078 <br />.0104 <br />I ,01,6 <br />,0208 <br />.0260 <br />0313 <br />0417 <br />.0:121 <br />0625 <br />.0729 <br />1 3 <br />3 1 <br />4 <br />5 <br />6 <br />7 <br />L <br />3 <br />9 <br />lU <br />11 <br />_.0833. ..tfi67 <br />.2500 <br />3333 <br />'.4167 <br />.3000...3833. <br />.61167 <br />.7500 <br />.83$3 <br />9167 - i <br />