Laserfiche WebLink
TRIGONOMETRIC FORMULAE <br />�i 1 33 B B <br />} d a c a a <br />a <br />b ° a�b <br />Right Triangle Oblique Triangles <br />"Solution, of Right Triangles <br />a b a b c a <br />i, Tor Angle A, sin = a , coe = C , tan= 3 , cot= a —,see = b , cosec = <br />(liven Required a <br />I� a,b A,B,o tan A=b= cot B,e= a' }=a 1 } s <br />9 <br />74 <br />t{ a� a A, B; b gin = = COB B, b (d +__T(` --a) ='c <br />A, a B, b, a B=90*=A, b= a eotA, e= a YY <br />I <br />gin A. <br />A, b B, a, a, B = 90°—A, a = b tan A, c = cos A. <br />!' A, e B, a;! b B = 90°—A, a = c sin A, 6= e, cos A, <br />Solution of an Oblique Triangles <br />9 g <br />Given Required _ a sin B in C <br />' A, B, a 'b, e, iC b ein A ' C = 180°—(A } B), a = sin A <br />b min A a ein C <br />c, C sin B =a . C = 180°—(A + B) , n = sin A <br />q b, C A, B,'6 A+B-180°— C, tan (A—B)= b) tan (A +B <br />I' k _asin C a+b <br />• a sin A <br />I <br />bi a A, B; C s=o' 2 iniA= g b <br />. Bm }B— a d ,C-180° lA+B) <br />d Area s— 2 <br />l I b- a Bin A <br />j, .el, b, a Area area = 2 <br />t <br />of sin B sin <br />.A, B, Ca Ares aArea = C <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance —Slope distance multiplied by the <br />cosintepee Vert Bof ang angle 50 10'. cal From Tablus;e,Page IX cos b°81 <br />all m 9969. Horizontal distance=918.4X.9959=318.09 ft <br />C,% Ante Horizontal distance also=Slone distance minus slope <br />Ve distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance Ing result is obtained. Cosine 5° 10'=.9959. 1--.8859=.0041. <br />319.4X.0041=1.31.319.4-1.31=318,09 ft. <br />Whe¢ the -rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft.. <br />',slope distance=502.8 ft.,Horizontal distance=9628— 14 X 14 3028-0.32=30228 ft- <br /><.� 2XS28 <br />-'� MADE IN U. S. A. <br />1 <br />