Laserfiche WebLink
?; 41 TRIGONOMETRIC FORMUL E— <br />r" <br />r� n a <br />b <br />Cb C b <br />Right Triangle Oblique Triangles ' <br />Solution of Right Triangles'Fo <br />o r Angle A. sin = a cos = , tan = ','cof = a , sec <br />Given, Required a z a <br />1 a, b A' B ,o tan A =.b = cot B, a a$ ''= a 1 + dz i <br />eA, B, b ;sin A = =cos B, b = �J {e l a (e—a} = c 1— o <br />Vi A, a B, b, c B=gQ°—A, b= atootA, o a 4 <br />-' sin A. <br />A, b B, a, a B=90'—A, a= bran A, c b <br />cos A <br />rA,.c - rB, a, b= . B=90°—A, a;=.csinA, b= a coed, <br />G Solution of Oblique Triangles <br />{ i Given Required a sin B <br />1 j A B,.a d, c, C b sin A C=.180°—(A + B), c sin A <br />$b sin A , a sin C <br />B, c, C sin B = a , t: = 180 -(A + B) , c sin A <br />af, a, C A, B, c A+B-1$0°-0,tan;(�-8)= a—b)tan t1 B) <br />1 <br />- E _ sine 4 <br />'J A, B, C 8-- . 2 in JA=_bo <br />C=180°— (A+B) <br />i.� <br />a, b, . e Asea s = a+2+c, area = s{a ac a— (s c <br />bosinA <br />G., b, c Area area = . <br />fi 2 ' S: <br />�g B C a Area area — as sin B sin 0 a <br />2 sin A ? <br />REDUCTION TO HORIZONTAL ;I <br />Horizontal distance= Slope distance multiplied by the . S <br />e- cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />Igoe Vert angle= b° w. From Table, Page IX. cos b° lo'= <br />S m 9959. Horizontal distance=319.4X.9859=318.09 ft i <br />1 51o4e P4��e Horizontal distance also --Slope distance minus slope <br />�e distance times (1 --cosine of vertical angle). With the <br />same figures as in the preceding example, the follow- i <br />Horizontal distance ing resultis obtained. Cosine b° l0'=.9959.1—,9959= .0041. <br />- 818.4X.11041—t.31. 518.4—].81=318.09 it <br />Whenthe rise is known, the horizontal distanceis approximately.—the slope dist <br />- <br />�,nce less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft,�,. <br />dope distance=9029 ft Horizontal distance=3028— 4 X 14 =8026 932=30228 ft. <br />2 X 9026 j <br />MADE IN U.S.A. <br />