Laserfiche WebLink
CUM: TA ni c ' . <br />Published by KEUFFEi 8. ESSER Co. <br />Now r® USE CURVE TABLES <br />Table I. contains Tangents and Externals to a 1° curve. Tan and <br />Ext. <br />xExt-any other radius may be found nearlyenough, by dividing the Tan. <br />APOsite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1° curve will <br />be the Nat. Tan. or Nat, Ex. See. <br />EXAMPLE <br />of Intersect n orrvwith at, Ext. 1e P. =230 20' to the about <br />R.1 at fr. <br />Stat,oln <br />542+72. <br />Ext. in Tab. I opposite 230 20' =120.37 <br />j 120.87 =12 - 10.07. Say a 10° Curve, <br />Tan, in Tab. I Opp, 23° 20'=1183.1 <br />•1183.1y10=118.31. <br />Correction for A. 23' 20' for a 10° Cur, =0.16 <br />118.31-}-0.16 =118.47 =corrected Tangent. <br />(If_corrected Ext* <br />is required find in same way) <br />Ang. 23° 20'=23.33*-s0=2.3333=L. C. <br />20 1921'= clef. for sta, 542< I, T'. =sta." 542 i 72 <br />4° 4911= ,� « <br />7' 192' = u a . 5 1 . 18.47 <br />1'an. = <br />543 B. C. <br />90 4921— u u +50 541+53.53 <br />11'401= v u 543+ L C = 2 .33.33 <br />1Qa-53..53 46.47 X'W(de6 for ft. f 10, Cu'.)139.41 6 86 <br />2° 19;' = def. for sta, 542, <br />Det, for 50 ft. =2° 30' for a 10' Curve. <br />Def, for 36.86 ft. =1' 50}' for a 10° Curve. <br />� r <br />Ik <br />r <br />r <br />i <br />f <br />i <br />i <br />j <br />CUM: TA ni c ' . <br />Published by KEUFFEi 8. ESSER Co. <br />Now r® USE CURVE TABLES <br />Table I. contains Tangents and Externals to a 1° curve. Tan and <br />Ext. <br />xExt-any other radius may be found nearlyenough, by dividing the Tan. <br />APOsite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1° curve will <br />be the Nat. Tan. or Nat, Ex. See. <br />EXAMPLE <br />of Intersect n orrvwith at, Ext. 1e P. =230 20' to the about <br />R.1 at fr. <br />Stat,oln <br />542+72. <br />Ext. in Tab. I opposite 230 20' =120.37 <br />j 120.87 =12 - 10.07. Say a 10° Curve, <br />Tan, in Tab. I Opp, 23° 20'=1183.1 <br />•1183.1y10=118.31. <br />Correction for A. 23' 20' for a 10° Cur, =0.16 <br />118.31-}-0.16 =118.47 =corrected Tangent. <br />(If_corrected Ext* <br />is required find in same way) <br />Ang. 23° 20'=23.33*-s0=2.3333=L. C. <br />20 1921'= clef. for sta, 542< I, T'. =sta." 542 i 72 <br />4° 4911= ,� « <br />7' 192' = u a . 5 1 . 18.47 <br />1'an. = <br />543 B. C. <br />90 4921— u u +50 541+53.53 <br />11'401= v u 543+ L C = 2 .33.33 <br />1Qa-53..53 46.47 X'W(de6 for ft. f 10, Cu'.)139.41 6 86 <br />2° 19;' = def. for sta, 542, <br />Det, for 50 ft. =2° 30' for a 10' Curve. <br />Def, for 36.86 ft. =1' 50}' for a 10° Curve. <br />