Laserfiche WebLink
y3 41) <br />z�two$ <br />- <br />ill <br />TABLE IL - Radii, Ordinates and Deflections. Chord =100 ft. <br />Dag. <br />Radius <br />Mid. <br />Ord. <br />Tan, <br />Dist. <br />lief, <br />Dist. <br />Def. <br />1 or <br />Deg. <br />Tia lius <br />Mid. <br />Ora, <br />Tan <br />. Dist. <br />Def. <br />Dist. <br />Def. <br />o , <br />1 r t. <br />2° 58' <br />3° 43' <br />101.15 <br />320 <br />181-39 <br />1° 59'.; <br />2° 25' <br />t. <br />z, TL -t. <br />101.33 <br />f L. <br />171.01 <br />0°•10' <br />34377. <br />.036 <br />.145. <br />.291 <br />0.05 <br />7. <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2'.10 <br />20 <br />17189.. <br />•.073 <br />.291 <br />.582 <br />0.10 <br />20 <br />7S1.$'1.000 <br />146. ig <br />6.305 <br />12.79 <br />2.20 <br />30, <br />11459. <br />.109 <br />.436 <br />.873 <br />0.15 <br />30 <br />764.5 <br />1'.637 <br />6.54013.08 <br />13347 <br />2.25 <br />40. <br />8594.4 <br />.145 <br />.582 <br />1,164 <br />0.20 <br />40 <br />747A <br />1.673 <br />6.685 <br />13.37 <br />2.30 <br />50 <br />6875.5 <br />'.182 <br />.727 <br />1.454 <br />0.23 <br />8 <br />.716.8 <br />1.746 <br />,6,976 <br />13;95 <br />2.40 <br />II <br />6729.6 <br />.218 <br />.873 <br />1.745 <br />0.30 <br />20 <br />6SS.2 <br />1.819 <br />7.266 <br />14:53 <br />2.;A <br />10 <br />4911.2 <br />.255 <br />1.018 <br />1o6,5o <br />0.35 <br />30 <br />674.7 <br />1.855 <br />7,411 <br />14.82 <br />2.55 <br />.20 <br />4297.3 <br />.291 <br />1.164 <br />_2,036 <br />2,327 <br />0:40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />1'5,11 <br />2.60 <br />30 <br />3819.8' <br />.327 <br />1.300 <br />2.618 <br />0.45 <br />9 <br />637.3 <br />1.965 <br />7.846 <br />15.69 <br />2.70 <br />40 <br />3437.9 <br />.364 <br />1,454 <br />2.909 <br />0.50 <br />20 <br />614.6 <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />50 <br />3125.4 <br />.400 <br />1,600 <br />3.200 <br />0.55 <br />30 <br />003.5 <br />2.074 <br />8.281 <br />16.56 <br />2,85 <br />2 <br />2864.9 <br />,436 <br />1.745 <br />3.490 <br />0.60 <br />.40 <br />593.4 <br />2.1110 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644.5 <br />5473 <br />1,891 <br />3.7SI <br />0.65 <br />10 <br />573.7 <br />2.183 <br />8.716 <br />17.43 <br />3.00 <br />20 <br />2455.7 <br />:509 <br />2.036 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />0.150 <br />18.30 <br />.3. i'5 <br />30 <br />2292.0 <br />.545 <br />2,181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2148.8 <br />.582 <br />2,327 <br />4.654 <br />0.80 <br />30 <br />409.1"2.511 <br />10,02 <br />20.04 <br />3.45 <br />80 <br />2022.4 <br />.618 <br />2,472 <br />4.1145 <br />0.85 <br />12 <br />478.3 <br />2.620 <br />10,45 <br />20.91 <br />3.60 <br />3 <br />1910.1 <br />.655 <br />2.618 <br />5.235 <br />0.90 <br />30 <br />459.3 <br />2.730 <br />10,89 <br />21.'77 <br />3.75 <br />610 <br />1809.6 <br />.691 <br />2,763 <br />5.526 <br />0.95 <br />13 <br />441.7 <br />2.839 <br />11.32 <br />22.04 <br />3-90 <br />20 <br />1719.1 <br />-.727 <br />2.908 <br />5.817 <br />1.00 <br />30 <br />425.4 <br />2.940 <br />11.75 <br />23.51 <br />4.05 <br />30 <br />1637.3 <br />.764 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3. <br />.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />..803.199 <br />0 <br />6.398 <br />1.10 <br />30' <br />396.2.3.168 <br />12.62 <br />25.24 <br />4.35 <br />50 <br />1495.0 <br />.836 <br />3.345 <br />6.689 <br />1.15 <br />15 <br />383.1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />4 <br />1132.7 <br />'.873 <br />3.490 <br />6.080 <br />1.20 <br />' 30 <br />370.8 <br />3:387 <br />13.49 <br />26.97'4.05 <br />10 <br />1375.4 <br />.909 <br />3.635 <br />7.271 <br />1.25 <br />Its <br />359.3 <br />3.406 <br />13.92 <br />27.84 <br />4-80 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />,7.501 <br />1.30 <br />30 <br />348.5 <br />-606 <br />14.36 <br />28.70 <br />4.95 <br />/ 30 <br />1273.6 <br />.982 <br />3.926 <br />•7.852 <br />1.35 <br />1.7 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228.1 <br />1.018 <br />4.071 <br />S. 143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />P 50 <br />1185.8 <br />1.055 <br />4.217, <br />S.433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16.51 <br />33.01 <br />5.70 <br />6 <br />1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37 <br />34.73 <br />6.00 <br />10- <br />-1109.3 <br />1.127 <br />4.507 <br />5.014 <br />1,55 <br />21 <br />27.1.4 <br />4.594 <br />18.22 <br />36.,44 <br />6.30 <br />20 <br />'1071.7 <br />1.164 <br />4.653 <br />9,305 <br />1.60 <br />22 <br />262.0,4.814,19.08 <br />35.16 <br />6.60 <br />j30 <br />,1042,1 <br />1.200 <br />4.798 <br />0+.596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />40 <br />1011.5 <br />1.237 <br />4,943 <br />9.886 <br />1.70 <br />24 <br />240;5 <br />5,255 <br />20.79 <br />41.58 <br />7.20 <br />50, <br />982:6 <br />1.273 <br />5.088 <br />10,18 <br />1.75 <br />26 <br />231.0 <br />5.476 <br />21.64 <br />43.28 <br />7.50 <br />0 <br />955,4.1.309 <br />5.234 <br />10.47 <br />1:80 <br />26 <br />222.3 <br />5.697 <br />22.50 <br />44.99 <br />7.80 <br />10 <br />029:6'1.346 <br />5'.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.018 <br />23.35 <br />46.69 <br />8.10 <br />20 <br />905.1 <br />1.382 <br />6.624 <br />11.05 <br />1.90 <br />28 <br />206.7 <br />6.139 <br />24.19 <br />48.38 <br />8.40 <br />30 <br />881.9 <br />1.418 <br />5.669 <br />11.34 _ <br />1.95 <br />29 <br />199.7 <br />6.360 <br />25.04 <br />50.07 <br />8.70 <br />40' <br />859.9 <br />1.465 <br />5.814 <br />11.63 <br />2.00 1 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />The middle ordinate in inclies for any cord of length (C) is equal tc3 ..0012 C' <br />mrltiplied by the middle ordinate taken froln the above table. Thus, if it <br />desired to bendµ 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X900X2.183 or 2.36 inches, <br />TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />- R diusr <br />sin. I def. ang. <br />l sub chord <br />R = sin of i def: angle <br />Length <br />of are <br />for 100 ft. <br />12,5 Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft,' <br />30° <br />193 -IS <br />1'-51 , <br />2° r7' <br />2° 58' <br />3° 43' <br />101.15 <br />320 <br />181-39 <br />1° 59'.; <br />2° 25' <br />3° 10 <br />3° 58' <br />101.33 <br />34° <br />171.01 <br />2° 06' <br />2° 33' <br />3° 2I' <br />4° 12' <br />101.48 <br />36° <br />161.80. <br />2° 13' <br />2° 41' <br />3° 33' <br />4° 26' <br />iot.66 <br />38°153.58 <br />.0667 <br />2° 20' <br />2° 49' <br />3° 44' <br />4° 40; <br />101 8,j <br />40° <br />146. ig <br />2° 27' <br />2° 57' <br />3° 55 <br />4° 54' <br />fo2, o6 <br />42° <br />139.52 <br />2034� <br />3° 05 <br />4° 07 <br />S° 08 <br />102.29 <br />44° <br />13347 <br />2° 41 <br />3° 13 <br />4° 18' <br />5° 22' <br />102.53 <br />46° <br />127-97 <br />2° 48' <br />3° 21 <br />4° 29' <br />5° 36' <br />102.76 <br />4$0 <br />122.92 <br />2` 55' <br />3° 29' <br />4° 40' <br />S° 50' <br />103.00 <br />50° <br />118.31 <br />3° 02' <br />3° 38' <br />4° ,51 <br />6° 04' <br />103.24 <br />52° <br />174,06 <br />3° 09' <br />3° 46' <br />5° 02' <br />60 17' <br />103.54 <br />540 <br />.110.11 <br />-.3° 16' <br />3° 54' <br />5° 13' <br />6° 31' <br />103.84 <br />56° <br />1o6,5o <br />3° 22' <br />4° 02 <br />5°23' <br />6° 44' <br />104.14 <br />58° <br />103.14 <br />3° 29' <br />4° 10' <br />S° 34' <br />6° 57' <br />10443 <br />6o° <br />106,00 <br />3° 35' <br />4° 13' <br />5° 44' <br />j 7° 11' <br />10}"72 <br />Ix <br />CURVE FORMULAS <br />T= R tan I I R= T cot. 2 I chord' <br />_ 5o tan ',,I Chord def. _ <br />T Sin- z D $ = 50. R <br />Sin. 1, D - 50 Sin. , D No. chords = I <br />R E= R es. secs f D <br />Sin j D _ 5o tan 1 l E = T tan j I Tan. def. _ ; chord def. <br />The, square of any distance, divided by twice the radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a, given distance and deflection. <br />Rule: r. M ultiply the given distance by .01745 (def. for I° for i ft. <br />sue Table If.), and divide given deflection by the product. <br />Rule 2. Multiply -given deflection by 57.3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. Multiply the angle <br />by .01745, and -the product by the distance. <br />GEN RAL" DATA <br />RIGHT ANGLE TRIANGLE:;. Square the altitude, divide by tivlce the <br />base. Add quotient to base for hypotenuse. <br />Given Base ioo, Alt. io.1o2=2oo=.5. ioo+.g=ioo.,5 hyp. <br />Given Hyp. loo, Att. 25.252-200=3.125. 100-3.t25=96.875=Base. <br />Error in first example, .002; in last, .045. <br />To find Tons of Rail in one mile of track: multiply weight per yard <br />by 11, and divide by 7.. <br />LEVLLING. The correction for curvature and refraction, in feet <br />and decimals of feet is equal to 0.574d2, where d is the distance in miles. <br />The correction for curvature alone :is closely, ,d2. The` comhined cor- <br />rection is negative. <br />PROBABLE ERROR. If di, d2, d3, etc. are the discrepancies of various <br />results from the mean, and if Xd2=the sum of the squares of ;these differ- <br />ences and n=the number of observations, then the probable error of, the <br />mean= 3dz , <br />*0.6745 li(n_1) <br />SOLAR.-EPHEINIERis. Attention is called to the Solar Ephemeris for <br />the current year, published by Ketlffel ,4t Esser Co., and furnished upon <br />request. This handy booklet, 3,,x6 in., has about 190 pages Of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and solar <br />attachments; directions and tables for determining the meridian and the <br />latitude from observations on the sun and Polaris; stadia measurements; <br />magnetic declination; arithmetic constants, etc. <br />TABLE IV. -Minutes in Decimals of a Degree <br />1t <br />.0167 <br />111 <br />.1833 <br />210 <br />.3500 <br />31' <br />.5167 <br />41' <br />.6833 <br />5V <br />.8500 <br />2 <br />.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />.8667 <br />3 <br />.0500 <br />13 <br />.2167. <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4 <br />.0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />5 <br />.0833 <br />15 <br />.2500' <br />25 <br />4167 <br />35 <br />.5633 <br />45 <br />.7500 <br />55 <br />0167 <br />6 <br />.1000 <br />16 <br />.2667 <br />26 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />56 <br />9333 <br />7. <br />.1167 <br />17 <br />.2833 <br />27 <br />.4500 <br />37 <br />,6167 <br />47 <br />.7833 <br />57 <br />.9500 <br />8 <br />.1333 <br />18.3000 <br />28 <br />.4667 <br />38 <br />.6333 <br />48 <br />.8000 <br />58 <br />9667 <br />9 <br />.1500 <br />19 <br />.3167 <br />29 <br />.4833 <br />39 <br />.6500 <br />49 <br />.8167 <br />59 <br />AJS33 <br />10 <br />.1667 <br />20 <br />3333 <br />30 <br />.5000 <br />40 <br />.6667 <br />50 <br />.8333 <br />60 <br />1.0000 <br />TAR1,F <br />%'-Inches <br />in Decimals -of a Foot. <br />1-16 3-32 'rb <br />3-16 <br />!f <br />I 5-16 <br />'4 <br />!� <br />Se % <br />�a <br />.0052 .0078 .0106 <br />0156 <br />.0208 <br />.0260 <br />.0313 <br />.0417 <br />.0521 I .0623 <br />.0729 <br />F 2 3 <br />4 <br />5 <br />6 <br />i <br />3 <br />I <br />9 10 <br />• <br />11 <br />.0833 .1667 .2560 <br />.3333 <br />.4107 <br />.SUUci <br />..;7d3a <br />.6067 <br />.7500 .8333 <br />X1167 <br />r �_v <br />�1 <br />