Laserfiche WebLink
t — <br />�f TRIGONOMETRIC FORMULAE <br />P J5 B <br />j- 3 3?-Sr 0 -ate <br />tau a e a e a <br />d A <br />�� ego 3 c b CbA <br />12, <br />�• <br />•�I <br />I�' •1 /-° po Right Triangle Oblique Triangles <br />�S / 77 J Solution of Right Triangles <br />-33. _ pp For Angle A. <br />sin = e ,cos= e , tan= , cot = a , sec = 8 , cosec = <br />�# y v Given Required a <br />a, b A, B , c tan A = -• = cot B, e = a= -j- ' = a <br />D <br />b r. as <br />.l / �f d• s —�- <br />A, B, b sin A = a - =coo B, b Q <br />V ae <br />Y �' :� •- / � „�� � � yea � f _�� I` A' a B, b' C B= 0a a <br />9. —A, b = a cot$, c= sin A. <br />o , <br />_ y _ <br />�3 A' b B, a, o B=90° a= btanA c= b <br />' cos A. <br />�` -��"'�� A,c B, a, b i B=90.°-d,a=ceinA b=ccosA <br />2,,G Solution of Oblique Triangles <br />Given Required a ein B <br />in C <br />A, B, a b, c, C b = , C = 180°—(A {- B), C = ®;n A <br />j ✓ sin A <br />bsin AaeinC <br />A,a,b B,c,C einB= a rC=180° —(A -1 B),C= sin <br />-07 Pio ,(a—) + <br />�w, $ —�. /3 - n_ - .� a b, C A, B, a A { B=184° -.C, tan(A-B)- b tan (A B), <br />y <br />� f �. ..� � � � /iy p4 � 61n A <br />3� <br />a� Z-/ -)7- � a, b, a A, B, C <br />0 s a+b+a,sinA- <br />f,Ca y^� a y ov � <br />2 -� be <br />11 „�3 7 -14 <br />vin jB_ ��.•.— �� c=Iso°—(A+B) <br />/ ac <br />c S L <br />to [°o - a, 2 <br />t '� ' <br />-� �j„ 3 /� � p • 7i' '- b c Area <br />2rZO A, b, a Area area = b e stn A <br />go -o 2 <br />A, B. C, a Area area = a= sin B sin t7. . <br />2 sin A <br />REDUCTION TO -HORIZONTAL <br />i - Horizontal distance= Slope distance multiplied by the <br />cosine elthevertical angle. Thus: slope distance =319.4 ft. <br />s t~6$ m Vert. angle=5° 101. Brom Table, Page fY_ cos 50 1W= <br />a <br />9959. Horizontal distance=319.4X.9958=318.09 ft. <br />ggle Horizontal distance also=Slope distance minus slope <br />distance times (1 --cosine of vertical angle). With the <br />same figures as in the preceding example, the follow- <br />( Horizontal•distaaee ing result is obtained. Cosine 50101=.9959. j-.p959=.0"j. <br />319.4X.0041=1.31.319.4 1.31=318 08 ft. i. i -. - When the -rise is known, the horizontal distance is approximately= -the slope dist- <br />mea less the square of the rise divided by twice the slope distance. Thus: rise=14 it, <br />�aYope distance=3026 ft. Horizontal distance=SOZ.t�-- 14 X 14 <br />2X302.6 <br />-3$2$-0.32=302211 ti. <br />.4 MADE IN Il, a. A, <br />