Laserfiche WebLink
VIII <br />TABim II. ---- <br />i' Defleetions7 Chord` -_100,f t. <br />Deg. <br />Radius <br />Mid <br />Ord. <br />Taa. <br />Dist, <br />De[, <br />Dist. <br />o r <br />1 F6 <br />Deg. <br />Radius <br />Mid <br />Ord. <br />Ten. <br />' Dist. <br />Def. <br />Diet. <br />Dor' <br />7 Ft. <br />2° 17` <br />t. <br />43' <br />rt. <br />ft. <br />181.39 <br />1' $91 <br />It. <br />fV. <br />ft. <br />ft. <br />34° <br />0'10' <br />34377. <br />036 <br />.145 <br />- .291 <br />0.05 <br />.7° <br />819.6 <br />1.528 <br />6.105-12.21 <br />3°33' <br />2.10 <br />20 <br />17189. <br />.073.291 <br />2° 20' <br />.582 <br />0.10 <br />.20' <br />781.8.1.600 <br />400 <br />6.395 <br />12.79 <br />2.20 <br />30 <br />11459. <br />109 <br />.436 <br />' .873 <br />0.15 <br />30 <br />76.1.5 <br />1.037 <br />6.540 <br />13.08 <br />2.23 <br />4D <br />8594.4 <br />.145 <br />.582 <br />1.164 <br />0.20. <br />40 <br />747-:9 <br />1.673 <br />6:685 <br />13.37 <br />2.30 <br />5D <br />.0875.5.-..188 <br />2° 55, <br />.727 <br />1.454 <br />0.25 <br />S' <br />50' <br />1,746 <br />6:976 <br />13.95 <br />2,49 <br />1 <br />5729,G <br />.218 <br />.873 <br />1.745 <br />0.30' <br />20 <br />688.2 <br />1!819 <br />'7.266 <br />14•.53 <br />2. LO <br />10 <br />4911.2 <br />.255 <br />1.018 <br />' 2.036 <br />0.3.5 <br />30 <br />674.7: <br />1.855' <br />7.411 <br />14.S2 <br />2. 55 <br />i 20, <br />4297.3, <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.692 <br />7.556 <br />.15.11 <br />2.G0 <br />30, <br />3,419.8 <br />.,327 <br />1.309 <br />6 2.61 <br />0.45 <br />9- <br />637.3'1.965 <br />7.846 <br />1,5:G9 <br />2,70 <br />.40 <br />3137.9 <br />.364 <br />1.454 <br />2:909 <br />0.50 <br />20 <br />614.6 <br />2.037 <br />8,136 <br />16.27 <br />2780 <br />50 <br />3125.4 <br />'.400 <br />1.600 <br />3.200 <br />0.55 <br />30 <br />603.8 <br />2.074 <br />8.28116.56 <br />2,85 <br />2 <br />2861.9 <br />•.436 <br />1.745 <br />3.4900.60 <br />40 <br />593.4 <br />2,110 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644.6 <br />.473 <br />1.891 <br />3.781 <br />0.65 <br />10 . <br />573.7 <br />2.183 <br />8.716 <br />17.43 <br />3.00 <br />-20 <br />-2155.7 <br />.509 <br />2.036 <br />:4.072 <br />0.70 <br />30 <br />546.4 <br />2.202 <br />9.150 <br />18,30 <br />3.1.5 <br />30 <br />2202,0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 . <br />521.74 <br />2.402 <br />9.585 <br />19,16 <br />3.30 <br />40 <br />-2148.8 <br />.562 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />499.1. <br />2.511-10,02 <br />20.04 <br />3,4.5 <br />50 <br />2022.4 <br />.613 <br />2.472 <br />4.945 <br />0.85 <br />.12 <br />478.3'2.620 <br />10,45 <br />20,91 <br />3.60 <br />9 <br />1910.1 <br />.655 <br />2.618 <br />5.235 <br />0.90 <br />30 <br />459.3 <br />2.730 <br />10.89 <br />21.77 <br />3.75 <br />10. <br />1809.6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />12 <br />441.7 <br />2.839 <br />11.32 <br />22.64 <br />3,90 <br />20 <br />1719.1' <br />.727 <br />2.908- <br />5.817 <br />1'.00 <br />• 30 <br />425.4.2.949 <br />11,75 <br />23.51 <br />4.05 <br />30 <br />1637.3 <br />.704 <br />3.054 <br />6.108 <br />11.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12,62 <br />25.24 <br />4.35 <br />50 <br />1495.0 <br />.830 <br />3.345 <br />6.689 <br />1:15 <br />15 <br />383.1 <br />3.277 <br />13,05 <br />26.11 <br />4.50 <br />4 <br />1432.7 <br />.873 <br />3.490 <br />6.990 <br />1.20 <br />30 <br />370.8 <br />3.387 <br />13.40 <br />2G.07 <br />4.65 <br />30 <br />1375:4' <br />.909 <br />3:635 <br />7.271.1.25 <br />16 <br />359.3'3.496 <br />13.92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />7.561 <br />1.30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 <br />1273.6 <br />".982 <br />3.926 <br />7.852 <br />1.35 <br />17 <br />338.3'3.716 <br />14.78 <br />29.5G <br />5.10 <br />-40. <br />`228.1 <br />I.018 <br />4.071 <br />8.143 <br />1.40 <br />IS <br />319.6.3.935 <br />15.64 <br />3t.29 <br />5.40 <br />50 <br />" 1185.8 <br />1.055 <br />4.217 <br />5.433 <br />1.45 <br />19' <br />302:9 <br />4.155 <br />16.51 <br />33.01 <br />5.70 <br />6 <br />1146,.31.091 <br />4.362 <br />8.724 <br />1.50• <br />20 <br />287.9 <br />4,374 <br />17.37 <br />34.73 <br />6.00 <br />10,,:-,1109;'3 <br />1.127 <br />4.507 <br />9.014 <br />1.55 <br />21 <br />274.4 <br />4.594 <br />13.22 <br />36.44 <br />6.30 <br />206. <br />1074.7, <br />1'. 164 <br />4.653 <br />9.305 <br />1.6U <br />22 <br />262,0,4314 <br />19.08 <br />38.16,6 <br />G0. <br />1042.1.1.200 <br />4.798 <br />9.596 <br />1.65' <br />23: <br />250, Si <br />5.035 <br />19.94 <br />30.87 <br />G,9 0 <br />40 <br />1011:5..1.237 <br />4.943 <br />t9.986 <br />1.70 <br />Z4 <br />240'.5,5.255 <br />20:79 <br />41.58 <br />7.20 <br />50,' <br />'982.6'1.273 <br />5.088 <br />10.18 <br />1.75 <br />25 <br />2311.0 <br />5.476.21.64 <br />43.28 <br />7.50 <br />d <br />955.4 <br />1.309 <br />5,234 <br />10.47 <br />1.80 <br />Z6 <br />222:3 <br />5:697 <br />22.50 <br />44.99 <br />7.80 <br />10 <br />929.6 <br />1.346 <br />5.379 <br />1.0.76 <br />1.85 <br />Z7 <br />21412. <br />.918 <br />23.35 <br />46.69 <br />8.10 <br />20 <br />005,1 <br />1.382 <br />5.524 <br />.11.05 <br />1.90 <br />28 <br />206:7 <br />-139 <br />24.19 <br />48.38 <br />8.40 <br />30. <br />587.9 <br />1.418 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.716-160 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />859.9.1.455 <br />5.814 <br />11.63 <br />.2.00 <br />30. <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />The middle ordinate in inches for any coal of length (G) is equal to .0012C, <br />multiplied by the middle ordinate taken Froin the above table. '.lThns, if it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X900X2.183 or 2.36 inches. . <br />TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius <br />50 <br />M sub chord <br />]t = sin of i def. angle <br />len th <br />Le -of arc <br />for 100 ft. <br />sin. i; def. ang. <br />12,5 Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />30° <br />193.18 <br />1.51 1 <br />2° 17` <br />2° 58'3' <br />43' <br />:lot -15 <br />32° <br />181.39 <br />1' $91 <br />2°25. <br />310' . <br />3'58, <br />101.33 <br />34° <br />171.01 <br />2° o6' <br />20 13' <br />3° 21'. <br />-4° 12' <br />10148 <br />360 <br />16i,8o <br />2° 13'- <br />2°,41' <br />3°33' <br />4° 26' <br />1oi.66 <br />38° <br />153.58. <br />2° 20' <br />2° 49' <br />3' 44 <br />4° 40' <br />101.85 <br />400 <br />146.19 <br />2° 27. <br />2° 57' <br />30 55' <br />4' 54' <br />102.06 <br />42° <br />139.52 <br />2° 34' <br />3° 05' <br />4° 07'S° <br />08 <br />102.29 <br />44° <br />133.47 <br />20 41' <br />3° 13 <br />4° 18' <br />S° 22' <br />t02.53 <br />460 <br />127.97 <br />2° 48' <br />3°21! <br />4° 29' <br />5' 36' <br />102:76 <br />48° <br />122.92 <br />2° 55, <br />3° 29'4° <br />40' <br />5° 50' <br />103.00 <br />50' <br />r 18.31 <br />3° 02, <br />3° 38, <br />4° ,5,, <br />6' 04' <br />103.24 <br />52° <br />614.o6 <br />3° 09' <br />3o 46' <br />5° O2' <br />6° 17' <br />103•.54 <br />54° <br />110.11 <br />3° 16' <br />3° 54' <br />5° 13' . <br />60 31' <br />103-84 <br />56° <br />106.50 <br />3° 22' <br />4° 02' <br />.5 23' <br />6° 44' <br />10.1. 14 - <br />580 <br />103:14 <br />3°29 <br />4' Io` <br />5° 34' <br />6° 57' <br />104-43 <br />60° <br />100,00.t. <br />3' 35` <br />4° 18' <br />50 44' <br />7' 11' <br />104.72 <br />EX <br />CURVE FORMULAS 7 S r 9 <br />T =.R tan � I i7'- = cot. R = T 1 I chords <br />T '50 tan i a f z j 2' 5D Chord def. _ <br />Sin. s IJ p _ R <br />Sin. 1j 2 fa R Sin. j D No. chords = I <br />R E- R ex. secs 1 D <br />Sin. a D = S0 tan I <br />1' E = T tan I I Tan. def. _ ;chord des. <br />The square of any distance, divided by twice the radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule I. Multiply the given distance by .01745 (def. for 1° for i ft. <br />see Table 11.), and divide given deflection by the product. <br />Rule 2. Multiply given deflection by 57.3, and divide the product by <br />the given distance. <br />To find' deflection for a given angle and distance. Multiply the angle <br />by .01745; and the product by the distance.t7.9o`' <br />GENERAL DATA p-� <br />RIGHT-ANGLE TRIANGLES. Square the altitude, divulenby twice the <br />base. Add quotient to base for hypotenuse. ed 0 <br />Given mase too, Alt. ro.ro2-2oo=.5- too+.5=loo-.5 hyp• <br />Given Hyp. loo, Alt. 25.252-200=3.125. 100-3.125=96.875=Base.. <br />Error in first example, .002; in last, .045• - <br />To finis Tons of Rail in one mile of track: multiply weight per yard <br />by I i, and divide by 7. <br />LEVELIFC. The correction for curvature and refraction, in feet <br />and decimals of feet is equal to 0.574d2, where d is the distance in miles. <br />The correction for curvature alone is closely,d'. The combined cor- <br />rection is negative. <br />. FROKARLE ERROR. If di, d2, da, etc, are the discrepancies of various <br />results from the mean, and if zd2=the sum of the squ red of these differ- <br />ences and n=the number of observations, then the pF6W11e error of the_ <br />mean = 212 /3 yl - iCL+ e-7 <br />-0.6745 <br />_ <br />n(n-1) sz 2�r ��tD� �40 5. 7.q`S <br />,tea ar, <br />SOLAR EPHEMER1s. Attention iS called to the Solar Ephemeris for <br />the current year, published by Keuffel & Esser Co., and furnished upon <br />request. This handy booklet, 38x6 in., has about 190 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and solar. <br />attachments; directions and tables for determining the meridian and the <br />latitude from observations on the sun and Polaris; stadia measurements; <br />magnetic declination; arithmetic constants, etc. <br />TABLE IV. --Minutes in Decimals of a Degree. <br />It <br />.0167 <br />ll' <br />.1833 <br />211 <br />.3500 <br />311 <br />.5167 <br />41' <br />.6833 <br />51' <br />,8500 <br />2 <br />.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />5333 <br />42 <br />.7000 <br />52 <br />8667 <br />3 <br />.0500 <br />13 <br />.2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4 <br />.0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />-0000 <br />5 <br />.0833 <br />15 <br />.2500 <br />25 <br />.41.67 <br />35 <br />.5833 <br />45 <br />.7500 <br />55 <br />.9167 <br />6 <br />.1000 <br />16 <br />.2667 <br />26 <br />.4333 <br />36 <br />.6000 <br />46 <br />,7667 <br />56 <br />.!1:333 <br />7 <br />.1I67 <br />17 <br />.2833 <br />27 <br />.4500 <br />37 <br />-6107 <br />47 <br />.7833 <br />57 <br />.911100 <br />8 <br />.1333 <br />18 <br />.3000 <br />28 <br />.4667 <br />38 <br />.6333 <br />48.8000 <br />58 <br />0667 <br />9 <br />.1500 <br />19 <br />.3167. <br />29 <br />.4833 <br />39 <br />.6500 <br />49 <br />•.8107 <br />59 <br />X9833 <br />70 <br />.1667 <br />20 <br />.3333 <br />30 <br />.5000 <br />40 <br />.6657 <br />50 <br />.8333 <br />60 <br />1-0000 <br />TARLE -'.--inches in I)ecimals of a hoot. <br />1-16 3-32 z 3-16 !•a i 5-16 ?� r' <br />-0052 I .0078 .0104 .0156 .0208 I .0260 I .0313 I .0417 .0521O6?•50729 <br />1 1 3 4 I 6 7 3 9_ 10 11 <br />0833 .1667 .2500 .3333 .4167 .5000 :,833 6667 .7500 1 .8333 .9167 <br />