Laserfiche WebLink
0 J <br />VIII r <br />TADLE H. -- Radii, Ordinates and Deflections. Chard 100 ft. <br />Deg. <br />Radius <br />Mid. <br />Ord, <br />Tan, <br />Diet. <br />Def. <br />Dist. <br />D,f, <br />for <br />11't. <br />Deg. <br />Radius <br />Mid. <br />01d, <br />Tan <br />Dist.. <br />Def. <br />Diaz. <br />Def' <br />for <br />1 Ft, <br />z' S8' <br />3°43' <br />t• <br />32° <br />181,39 <br />1° S9' <br />2° 25` <br />t. <br />t. <br />t <br />u <br />171.01 <br />9'10' <br />34377. <br />.036 <br />.145 <br />.231 <br />0.05 <br />7' <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17189. <br />.073 <br />.291 <br />.582 <br />0.10 <br />20' <br />781,8 <br />1.600 <br />6.395 <br />J2.79 <br />2-20 <br />30 <br />11459. <br />109 <br />.436 <br />873 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.08 <br />2.25 <br />40 <br />8594,4' <br />,145 <br />.582 <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.685 <br />13.37 <br />2.30 <br />50 <br />6375.5 <br />.182 <br />.727 <br />1.454 <br />0.25 <br />8 <br />716.8 <br />1.746 <br />6.97G <br />13.95 <br />2,40 <br />11 <br />5729.6 <br />.218 <br />.873 <br />1.745 <br />0.30 <br />20 <br />688.2 <br />1.819 <br />7.266 <br />14.53 <br />2.,,0 <br />/,10 <br />a20, <br />4911.2 <br />.235 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855.7.411 <br />104 14, <br />14.83 <br />2.1,5 <br />/ <br />4297.3 <br />.291 <br />1.164 <br />2.327.0.40 <br />bo° <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15.11 <br />2.60 <br />130 <br />3319:8 <br />.327 <br />1.300 <br />2.018 <br />0.45 <br />9 <br />637.3 <br />1.061.5 <br />7.846.15.69 <br />2.70 <br />40 <br />3137.9 <br />.364 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />614.6 <br />2-037 <br />8.136 <br />10.27 <br />2.80 <br />IY50 <br />3125.4 <br />.400.1.600 <br />3.200 <br />0.55 <br />30 <br />603.8 <br />2.074 <br />8.281 <br />10-56 <br />2.55 <br />j2 `4 <br />10 <br />2864.9 <br />2644.6 <br />.436 <br />.473 <br />1_745 <br />1.891 <br />3-490 <br />3.781 <br />0.60 <br />0.65 <br />40 <br />10 <br />503.4 <br />573.7 <br />2.110 <br />2.183 <br />8.426 <br />8.716 <br />16,85 <br />17.43 <br />2.90 <br />3.00 <br />20 <br />2155.7 <br />.509 <br />2.036 <br />4:072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />9.150 <br />18.30'3.1,5 <br />30 <br />2292.0. <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.58.5 <br />10.16 <br />3.30 <br />-40 <br />2148.8 <br />.582 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />499..1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.618 <br />2.472 <br />4.945 <br />0.85 <br />12 <br />478.3. <br />2.620 <br />10.45 <br />20.91 <br />3.60 <br />3 <br />1910.1 <br />.055 <br />2.618 <br />5.235 <br />0.90 <br />30 <br />459:3 <br />2.730 <br />10.89 <br />2t.77 <br />3+75 <br />10 <br />1809.6 <br />.Gill <br />2.703 <br />5.526 <br />0.95 <br />13 <br />441.7'2.839 <br />11.32 <br />22.64 <br />3..90 <br />201719.1 <br />,727 <br />2.908 <br />5.817 <br />1.00 <br />30 <br />435.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30 <br />1637.3 <br />.764 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12.62 <br />25.2.1 <br />4.35 <br />50 <br />1495.0 <br />.836 <br />3.345 <br />6.689 <br />'1.15 <br />I5 <br />383.1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />4 <br />1132.7.873 <br />3.490 <br />6.930 <br />1.20 <br />30 <br />370.8 <br />3.387 <br />13.49 <br />26.97 <br />4.65 <br />10 <br />1375.4 <br />.909 <br />3.635 <br />7.271' <br />1.25 <br />16 <br />359.3 <br />3.496 <br />13.92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />7.561 <br />1.30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 <br />1273.6 <br />.982 <br />3.926 <br />7,852'1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />24.56 <br />5,10 <br />/ 40 <br />1228:1 <br />1.018 <br />4.071 <br />8,143 <br />1-40 <br />18 <br />310,.6 <br />3.935 <br />15.64 <br />31:29 <br />5.40 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />8.433 <br />J.45 <br />19 <br />302.9 <br />4.155 <br />16.51 <br />33.01 <br />5.70 <br />b <br />1.146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />2&7,:0 <br />4.:374 <br />17.37 <br />34.73 <br />6,00 <br />10 <br />1109.3 <br />1.127 <br />4.507 <br />9.014 <br />1.55 <br />21 <br />274,4 <br />4.04 <br />18.22 <br />36.44 <br />6,30 <br />20 <br />1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1.60 <br />22 <br />262.0 <br />4.814 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />1042.1 <br />1.200 <br />4.798 <br />9.590 <br />1.. G5 <br />23 <br />250.8 <br />.5.035 <br />19,94 <br />39.87 <br />6.00 <br />40 <br />1011.5 <br />1.237 <br />4.943 <br />9.886 <br />1.70 <br />24 <br />240.5 <br />5:.255 <br />20.79 <br />41.58 <br />7.20 <br />50 <br />982.6 <br />1.273 <br />5.088 <br />10.18 <br />1.75 <br />25 <br />231.0 <br />5.476 <br />21.64 <br />43.28 <br />7.50 <br />6 <br />955.4 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />26 <br />222.3 <br />5.697 <br />22,50 <br />44.99 <br />7.S0 <br />10 <br />929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />21 <br />214.2 <br />".918 <br />23,35 <br />46.69 <br />8.10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />206,7 <br />.139 <br />24.19 <br />48.38 <br />8-40 <br />30 <br />881.9 <br />1.418 <br />5.669 <br />11.34 <br />1.795 <br />29 <br />199.7 <br />6.360 <br />25,04 <br />50.07 <br />8.70 <br />40 <br />859.9 <br />1.455 <br />5.814 <br />11._93 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />51-7619.00 <br />xuu lwuuie orutuaw in mcaes Tor any ,;oT(t oT length tVJ 1s equai to 0012 t'` <br />multiplied by the middle ordinate taken from the above table. Thus, if it <br />leaired to bends :i0 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012Xo00X2.183 or 2.36 inches. <br />TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree. <br />of <br />Curve <br />Radius <br />50 <br />ain, $ def.ang, <br />Mauh chord _ sin of ¢def. angle <br />_.R <br />' Length - <br />of arc <br />for L00 ft. <br />12.5 Ft, <br />15 Ft. <br />20 Ft. <br />1 25 Ft. <br />300 <br />193.18 <br />1° 51' <br />2° ri` <br />z' S8' <br />3°43' <br />m1.15 <br />32° <br />181,39 <br />1° S9' <br />2° 25` <br />3° 1o' <br />3' 58, <br />101.3:3 <br />34'' <br />171.01 <br />2° o6' <br />2° 33 <br />3' 21' <br />4° 12' <br />I01.48 <br />36° <br />161.8o <br />2° 13' <br />2° 41' <br />3' 33' <br />4° 26' <br />Int -66 <br />38° <br />153.58 <br />2° 20' <br />2° 49' <br />3° 44' <br />4°.40' <br />101.8; <br />40°. <br />146.19 <br />2°27' <br />2° 57 <br />3'55' <br />4° 54' <br />102.06 <br />42' <br />139.52 <br />2' 34' <br />3° 05 <br />4° 07' <br />9° 08 <br />102:29 <br />44° <br />133 47 <br />2' 41 <br />3° 13' <br />4° 18' <br />S° 22' <br />102.53 <br />46° <br />127.97 <br />2° 48' <br />3° 2I' <br />4° 29' <br />5° 36' <br />102.76 <br />48° <br />122.92 <br />2055' <br />3° 29' <br />4° 40' <br />5°•5o' <br />103.00 <br />50° <br />118.31- <br />3° 02' <br />3° 38' <br />4° 51' <br />6° 04' - <br />lo3.21 <br />52° <br />114.06 <br />3° o9' <br />3° 4.6' <br />5° o2' <br />60 17' <br />103. 54 <br />54° <br />110.I1 1 <br />3° 16' <br />3' 54' <br />S' 13' <br />6° 31' <br />143.84 <br />56° <br />ro6.5o <br />3° 22' <br />4° 02' <br />S' 23' <br />6° 44 <br />104 14, <br />58° <br />103. r4 <br />3' 29' <br />4° 10' <br />5° 34'. <br />6° 57' <br />10443 <br />bo° <br />100.00' <br />3° 35` <br />4° 18` <br />5° 4' <br />7° .11' <br />104,72 <br />CURVE FORMULAS �� fIx <br />T= R tan ; I R- T cot. I I chord= <br />T _ 5o tan I Chord,def. = R <br />Sin. t D __ 50 <br />Sin. D= 50 E Sin. i D ISI <br />N _ <br />R E = R ex. sec -I O. chords = Q <br />Sin D _ go tez I E = T tan s I Tan. def. = z chord def. <br />The square of any distance, divided by twice the radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule t. Multiply the given distance by .01745 (def. for i' for l ft. <br />see Table IL), and divide given deflection by the product. <br />Rulc 2. Multiply given deflection by 57.3, and divide the product by <br />the given distance, <br />To find deflection for a given angle and distance. Multiply the angle <br />by .01745, and the product by the distance. <br />K7' GENERAL DATA <br />RIGHT ANGLE TRIANGLES. Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Given Base ioo, Alt. 10.10'=200=.5. lOO+.S=100.5 hyp. <br />Given Hyp. 1 oo, Alt. 25.2,52=200=3-12,5. 100 -3,12, = 96,875 = Basc. <br />Error in first example, .002; in last, .045. <br />To find "Pons of Rail in one mile of track: multiply weight per yard <br />by 1 I, and divide by 7. / <br />LEVFLINc. The correction, for curvature and refraction, in fce.t <br />and decirnals of feet is equal to 0.574d2, where d is the distance in miles. <br />The correction for curvature alone is closely, ;d'. The combined cor- <br />rection iA negative. -' <br />�PAOIIADLE ERROR. If ell, d2, da, etc. are the discrepancies of various <br />results from the mean, and if Ed'=the sum of the squares of these differ- <br />ences and n=the number of observations, then the probable error of the <br />Mean <br />-0.6745 NJn(n-1) <br />SOLAR EPHEAIERIS. Attention is called to the Solar Ephemeris for <br />the current year, published by Keuffel & Esser Co., and. furnished upon <br />request. This handy booklet, 38x6 in., has about 190 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and solar <br />attachments; directions and tables for determining the meridian and the <br />latitude frorn observations on the sun and Polaris; stadia measurements; <br />magnetic declination; arithmetic constants, etc. <br />TA13LE IV.-MinnteS.in Decimals of a Deeree. <br />it <br />A167 <br />Ile <br />.1833 <br />211 <br />.;1500 <br />311 <br />:5167 <br />411 <br />.6833 <br />51' <br />.8500 <br />2, <br />.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42' <br />9000 <br />52 <br />.8667 <br />3 <br />_0500 <br />13 <br />.2167 <br />23 <br />.3833' <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4 <br />01.67 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />-44 <br />.7333 <br />54 <br />.9000 <br />0833 <br />15 <br />12500 <br />25 <br />.4167 <br />35 <br />..5833 <br />45 <br />.7400 <br />55 <br />.9167 <br />6 <br />.1000 <br />16 <br />2007 <br />26 <br />A333 <br />36 <br />.6000 <br />46 <br />.7667 <br />36 <br />.9331 <br />7 ' <br />.1167 <br />17 <br />.2833 <br />27 <br />.4500' <br />37 <br />.6167 <br />47 <br />.7833 <br />.57 <br />.9500 <br />8 <br />.1333 <br />18 <br />.3000 <br />28 <br />-4667 <br />38 <br />.6333 <br />48 <br />.8000 <br />58 <br />.9667 <br />9 <br />.1500 <br />19 <br />.3167 <br />29 <br />.4533 <br />, <br />39 <br />.6500 <br />49 <br />.8107 <br />S9 <br />.9833 <br />10 <br />.1667 <br />20 <br />.3333 <br />30 <br />.:1000 <br />40 <br />.8667 <br />50 <br />.8333 <br />60 <br />1.0000 <br />I.vtr.1•: \'.---IItches <br />in Uecrnhals of a I•ool. <br />1-16 <br />3-32 <br />1.•q <br />3-16 <br />�.( n-16 <br />?a <br />0052 <br />.0078 <br />.0104 <br />..0156 <br />.0208 I .0360 <br />.0313 <br />.0117 <br />A:521 -06 25 <br />.0729 <br />I <br />-� <br />; <br />.0833 <br />.1647 <br />2500 <br />.3333 <br />.4167 000 <br />.:5337 <br />.a667 <br />.7fi00 1 8333 <br />.1!167 <br />