Laserfiche WebLink
CURVE TABLES <br />Published by 1(EUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES <br />ET <br />Table I. contains Tangents and Externals to a 1° curve. Tan. and <br />Ext. to any other radius may be found nearly enough, by dividing the Tan. <br />or Ext. opposite the given Central Angle h <br />To find Deg. of Curve, having the Ce tralthegAngle andven deeTangenof t: <br />= Divide Tan, opposite the given Central Angle by the given <br />Eternal: <br />n Tangent <br />To find Deg. -of Curve, having the .r <br />Divide Ext. opposite the given Central Central Angle'and by the given External. <br />To find Nat. Tan. and Nat..Ex. Sec. for any angle by Table I.: Tan. <br />' or Ext. of twice the given angle divided b <br />be the Nat. Tan, or Nat. Ex. Sec. y the radius of a 1° curve will <br />EXAMPLE <br />of In anted a Curve with an Ext, of abnur. 12 ft. Angle <br />542-72 23 20' co the 12. at Station <br />Ext. in Tab. I opposite 23° 20'=120.87 <br />120.87=12-10.07. Say a 10° (curve. <br />Tan. in Tab. f opp, 23° 20' =1183.1 <br />1183.1-10=115.31. <br />' Correctionfor"A. 23° 20' fora 10° Cur. =0.16 <br />1.18.31-x-0.16=11$.47=corrected Tangent. <br />- (if corrected Ext. is required find in samC. <br />ay) <br />Ang.23°20'=23.33°-10=2.3333—I,. e way) <br />21 191'—def. for sta. 542 l- P- — <br />4° 4911= —sta. 542-72 <br />7° 1911= u . v +50 Tan.= 1 .18.47 <br />9°4s1'= } 50 43 ]3. C.=sta• 541+53.53 <br />_ <br />11'40'= f° 543-1- L. C. = 2 .33.33 <br />86.86 E. C. = Sta. 543 -{-86.86 <br />100-52-53=46.47X3'(def. for 1 ft. of 10°Cur.)=139,41'= <br />2° lsz'=def, for sta. 542. <br />Def. for 50 ft. =2'201 for a 10° Curve. <br />Def, for 36.86 ft. = I` 501' fora 101 Curve, <br />Nx f <br />m i8 <br />5 <br />- <br />, <br />i <br />CURVE TABLES <br />Published by 1(EUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES <br />ET <br />Table I. contains Tangents and Externals to a 1° curve. Tan. and <br />Ext. to any other radius may be found nearly enough, by dividing the Tan. <br />or Ext. opposite the given Central Angle h <br />To find Deg. of Curve, having the Ce tralthegAngle andven deeTangenof t: <br />= Divide Tan, opposite the given Central Angle by the given <br />Eternal: <br />n Tangent <br />To find Deg. -of Curve, having the .r <br />Divide Ext. opposite the given Central Central Angle'and by the given External. <br />To find Nat. Tan. and Nat..Ex. Sec. for any angle by Table I.: Tan. <br />' or Ext. of twice the given angle divided b <br />be the Nat. Tan, or Nat. Ex. Sec. y the radius of a 1° curve will <br />EXAMPLE <br />of In anted a Curve with an Ext, of abnur. 12 ft. Angle <br />542-72 23 20' co the 12. at Station <br />Ext. in Tab. I opposite 23° 20'=120.87 <br />120.87=12-10.07. Say a 10° (curve. <br />Tan. in Tab. f opp, 23° 20' =1183.1 <br />1183.1-10=115.31. <br />' Correctionfor"A. 23° 20' fora 10° Cur. =0.16 <br />1.18.31-x-0.16=11$.47=corrected Tangent. <br />- (if corrected Ext. is required find in samC. <br />ay) <br />Ang.23°20'=23.33°-10=2.3333—I,. e way) <br />21 191'—def. for sta. 542 l- P- — <br />4° 4911= —sta. 542-72 <br />7° 1911= u . v +50 Tan.= 1 .18.47 <br />9°4s1'= } 50 43 ]3. C.=sta• 541+53.53 <br />_ <br />11'40'= f° 543-1- L. C. = 2 .33.33 <br />86.86 E. C. = Sta. 543 -{-86.86 <br />100-52-53=46.47X3'(def. for 1 ft. of 10°Cur.)=139,41'= <br />2° lsz'=def, for sta. 542. <br />Def. for 50 ft. =2'201 for a 10° Curve. <br />Def, for 36.86 ft. = I` 501' fora 101 Curve, <br />Nx f <br />m i8 <br />