Laserfiche WebLink
GONOMETR IC FORMUL& <br />GY- ` <br />a r a c <br />a <br />Right Triangle C ` —� Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. sin- _ , cos = c , tan= b , cat = a , see = L , cosec = <br />Given Required az a4 <br />a,b A;B,e tauA=b= cot B,c=-V—a-} a—a 1 7�_ <br />06 a A, B, b sin A= 6 = cos B, b =1✓ (c { a (c—a) = c V 1- 42 <br />A, a- B, b, c B=90o—A, b = acot A,c= a vv <br />sin A. <br />b <br />A, b -9, a, a IB = 90'—A, a = b tan A, c = <br />I cos A. <br />A, a B, a, b B= 90°—A, a = c sin A, b = c cos A, <br />j Solution of Oblique Triangles <br />Given Required asin B <br />I A, Aa L, c, C b= sin A'C=180°—(A+B),c= snA <br />b sin A <br />A,a,•b B,c,C sin B= a ,G''=180'—(A-pB),o= sinA <br />sin A <br />a, b _C.,- A, B c A 8-180"— C, tang"(A—B�= (a—b) tan a (A+� <br />., b,_ <br />o <br />a sin C a-+ b <br />sin A <br />o, b, c A, B, C s.sin IA— <br />2 <br />ti <br />sin 5B= V (d ac <br />a, b, c Area s=a�2+c, area = s(s—a s— (s—c) <br />A, b, c Area ares = b o sin A <br />2 <br />a' sin B sin C <br />A, B, G; a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />e cosine of the vertical angle. Thus: slope distance=319.4 ft. <br />�aoc Vert. angle=b° 101. From Table, Page IX. cos 5, id= <br />ass m 995.9. Horizontal distance=319.4X.9959=316.09 ft <br />51° ple a°'y Horizontal distance also= Slope distance minus slope <br />4e distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5° 10'=.9959. 1--.9959=.0041. <br />819.4X.0041=1.31.319.4-1.31=316.09 ft. <br />When the,rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />sltiope distance=81126 ft. Horizontal distance^SQ'L,6— 14 X 14 =8M" 32=3M23fL <br />2 X 8026 <br />MADE 14 V. S. A. <br />t <br />I <br />- <br />�0 <br />a d o <br />Z <br />Z. 3� <br />230S/S-� <br />c, . <br />30 <br />l -320- <br />,6z <br />� <br />2,3107 <br />� i <br />` <br />f a <br />GONOMETR IC FORMUL& <br />GY- ` <br />a r a c <br />a <br />Right Triangle C ` —� Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. sin- _ , cos = c , tan= b , cat = a , see = L , cosec = <br />Given Required az a4 <br />a,b A;B,e tauA=b= cot B,c=-V—a-} a—a 1 7�_ <br />06 a A, B, b sin A= 6 = cos B, b =1✓ (c { a (c—a) = c V 1- 42 <br />A, a- B, b, c B=90o—A, b = acot A,c= a vv <br />sin A. <br />b <br />A, b -9, a, a IB = 90'—A, a = b tan A, c = <br />I cos A. <br />A, a B, a, b B= 90°—A, a = c sin A, b = c cos A, <br />j Solution of Oblique Triangles <br />Given Required asin B <br />I A, Aa L, c, C b= sin A'C=180°—(A+B),c= snA <br />b sin A <br />A,a,•b B,c,C sin B= a ,G''=180'—(A-pB),o= sinA <br />sin A <br />a, b _C.,- A, B c A 8-180"— C, tang"(A—B�= (a—b) tan a (A+� <br />., b,_ <br />o <br />a sin C a-+ b <br />sin A <br />o, b, c A, B, C s.sin IA— <br />2 <br />ti <br />sin 5B= V (d ac <br />a, b, c Area s=a�2+c, area = s(s—a s— (s—c) <br />A, b, c Area ares = b o sin A <br />2 <br />a' sin B sin C <br />A, B, G; a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />e cosine of the vertical angle. Thus: slope distance=319.4 ft. <br />�aoc Vert. angle=b° 101. From Table, Page IX. cos 5, id= <br />ass m 995.9. Horizontal distance=319.4X.9959=316.09 ft <br />51° ple a°'y Horizontal distance also= Slope distance minus slope <br />4e distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5° 10'=.9959. 1--.9959=.0041. <br />819.4X.0041=1.31.319.4-1.31=316.09 ft. <br />When the,rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />sltiope distance=81126 ft. Horizontal distance^SQ'L,6— 14 X 14 =8M" 32=3M23fL <br />2 X 8026 <br />MADE 14 V. S. A. <br />t <br />I <br />- <br />GONOMETR IC FORMUL& <br />GY- ` <br />a r a c <br />a <br />Right Triangle C ` —� Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. sin- _ , cos = c , tan= b , cat = a , see = L , cosec = <br />Given Required az a4 <br />a,b A;B,e tauA=b= cot B,c=-V—a-} a—a 1 7�_ <br />06 a A, B, b sin A= 6 = cos B, b =1✓ (c { a (c—a) = c V 1- 42 <br />A, a- B, b, c B=90o—A, b = acot A,c= a vv <br />sin A. <br />b <br />A, b -9, a, a IB = 90'—A, a = b tan A, c = <br />I cos A. <br />A, a B, a, b B= 90°—A, a = c sin A, b = c cos A, <br />j Solution of Oblique Triangles <br />Given Required asin B <br />I A, Aa L, c, C b= sin A'C=180°—(A+B),c= snA <br />b sin A <br />A,a,•b B,c,C sin B= a ,G''=180'—(A-pB),o= sinA <br />sin A <br />a, b _C.,- A, B c A 8-180"— C, tang"(A—B�= (a—b) tan a (A+� <br />., b,_ <br />o <br />a sin C a-+ b <br />sin A <br />o, b, c A, B, C s.sin IA— <br />2 <br />ti <br />sin 5B= V (d ac <br />a, b, c Area s=a�2+c, area = s(s—a s— (s—c) <br />A, b, c Area ares = b o sin A <br />2 <br />a' sin B sin C <br />A, B, G; a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />e cosine of the vertical angle. Thus: slope distance=319.4 ft. <br />�aoc Vert. angle=b° 101. From Table, Page IX. cos 5, id= <br />ass m 995.9. Horizontal distance=319.4X.9959=316.09 ft <br />51° ple a°'y Horizontal distance also= Slope distance minus slope <br />4e distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5° 10'=.9959. 1--.9959=.0041. <br />819.4X.0041=1.31.319.4-1.31=316.09 ft. <br />When the,rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />sltiope distance=81126 ft. Horizontal distance^SQ'L,6— 14 X 14 =8M" 32=3M23fL <br />2 X 8026 <br />MADE 14 V. S. A. <br />