Laserfiche WebLink
S <br />ER CO. <br />ISLES <br />;o a 11 curve: Tan. and <br />ugh,bydividing theTan. <br />given degree of curve. <br />al ?angle and Tangent: <br />y the given Tangent. <br />ral Angle and External: <br />,y the given External. <br />Y angle by Table I.: 'ran. <br />radius of a I° curve will <br />bout 12 ft. Angle <br />he R. at Station <br />=120.87 <br />° Curve. <br />1183.1 <br />° Cur.= 0.16 <br />I Tangent. <br />in same way) <br />333 = L. C. <br />a, 542+72 <br />1 .18.47 <br />ta. 541 <br />2 .33.33 <br />ata, 543+8(5.8f) <br />0° Cur.) =139.41` <br />A2. <br />0° Curve. <br />a 10° Curve. <br />'20' <br />CURVE TABLE <br />Published by KEUFFEt & E55 <br />HOW TO USE CURVE I <br />. <br />Table I. contains Tangents and Externals <br />{xt; to any other radius may be found nearly enc <br />i <br />���o <br />t <br />,.r Ext. opposite the given Central Angle by th <br />To find Deg. of Curve, having the Centr <br />livide Tan. oPPasite the given Central Angle 1 <br />having the Cent <br />I ! : <br />To find Deg. of Curve, <br />livide Ext. opposite the given Central Angle 1 <br />(� To find Nat. Tan. and Nat. Ex. Sec. for at <br />-en angle divided by th <br />r Ext. of twice the <br />a the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE <br />+ <br />o!I/ F <br />eiZ Wanted a Curve with an Ext. of ; <br />Intersection or 1. P.=231 20' to <br />/of <br />// 'C7010,17Q <br />i 542+72. <br />Ext. in Tab. I opposite"23° 20' <br />fz `' 120.8712=10.07. Say a tl <br />Tan. in Tab. I Opp. 23° 20' _ <br />1183.1=1 0 =118-31. <br />i <br />;L <br />I Correction for A. 23° 20' fora 1( <br />118.31 +0.16 ='118.47 = correctel <br />( <br />(If corrected Ext*is required find <br />An 23° 20'=23.33°=10=2•: <br />d/ <br />./T! �� (J o% <br />1 i' ✓ <br />, t�G7 �i 2° 19v=def,forsta. 542 I. P.=s <br />i <br />4° 4917' _ : I u +50 Tan. _ <br />jJ 7°192'= 543 B. C. <br />0 <br />i D/' <br />9° 492'= ° - r.+50 <br />° .: ° 5 3+ L. C. _ <br />' <br />0 <br />i o�7.%� <br />/� <br />' <br />Cv� I 86.86 E. C.= <br />100-53.53=46.47X3'(def. for 1 £t. of <br />/ <br />ILI2° 19I'= def. for sta. <br />Def. for 50 ft. =2° 30' fora <br />3. <br />�/a3 . <br />Def. for 36.86 ft. =1° 5017' for <br />J <br />J- <br />1323 <br />a3Sr(oI <br />/0 <br />.3,0 <br />/03 <br />\ J <br />1 <br />S <br />ER CO. <br />ISLES <br />;o a 11 curve: Tan. and <br />ugh,bydividing theTan. <br />given degree of curve. <br />al ?angle and Tangent: <br />y the given Tangent. <br />ral Angle and External: <br />,y the given External. <br />Y angle by Table I.: 'ran. <br />radius of a I° curve will <br />bout 12 ft. Angle <br />he R. at Station <br />=120.87 <br />° Curve. <br />1183.1 <br />° Cur.= 0.16 <br />I Tangent. <br />in same way) <br />333 = L. C. <br />a, 542+72 <br />1 .18.47 <br />ta. 541 <br />2 .33.33 <br />ata, 543+8(5.8f) <br />0° Cur.) =139.41` <br />A2. <br />0° Curve. <br />a 10° Curve. <br />'20' <br />