Laserfiche WebLink
r` <br />sia A sin A <br />W / �"-36 <br />I <br />r- 1A, a, b <br />B, c, C <br />b sin A asin C <br />sin B = , C = 180°—(A { B) , o = <br />_ <br />a sin A <br />lc 1Q� <br />A. B. c <br />A+B=1$0°— C, tan (A—B)� <br />TRIGONOMETRIC FORMUL}R <br />a <br />z .A 6 CA�b CA c <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />a For Angle A. sin = , cos= b ,.tan= a , cot = b , sec = �, cosec = e <br />l a b a <br />Uiven Required ryz <br />a, b A, B,a tan A = b _= cot B, o = a2 + s = a I f <br />z <br />a, a A. B, b <br />a <br />A. a iTi, b, a B=90°—A, b = a cotA, c= sin A. . <br />a <br />A, b B, a, o B=90'—A, a = b tan A, o= coe A. <br />A, e, B, a, b B = 90°—A, a = o sin A, b�= a cos A, <br />Solution of Oblique Triangles c.f, <br />IA,B,a <br />' �Qlven Required, b asin B � C = T$0°—(A + B), c = &ein C <br />.b c,C <br />sia A sin A <br />I <br />r- 1A, a, b <br />B, c, C <br />b sin A asin C <br />sin B = , C = 180°—(A { B) , o = <br />_ <br />a sin A <br />A. B. c <br />A+B=1$0°— C, tan (A—B)� <br />a + b <br />a sin C. <br />'r <br />c= <br />sin A <br />- <br />b, a <br />A, B, C <br />s=a+Z+e,sinJA= <br />Y h(c�e)I <br />,C-180°—(A+B) <br />a+b -l- e <br />a; b, c <br />Areas <br />= 2 s— ) (s—c) <br />d <br />A; b, c <br />Area <br />area = b 6 sin A <br />! <br />2 <br />as sin B sin C <br />$ B C, a <br />1 I <br />Area <br />area - <br />sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance=319.4ft <br />ale �at+oe <br />Vert. ansle=5° IM From Table, Page iX. cos 5l 10'= <br />Horizontal distance=319,4X.9959=31&09 ft <br />a <br />5,ope <br />ogle <br />p' <br />w8959. <br />Horizontal distance also —Slope distance minus slope <br />a <br />�e <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance <br />Ing result is obtained. Cosine 5° 101=.9959.1—.9959=.0041. <br />819.4X.0041=1.91. 819.4-1.31=318.09 ft. <br />i <br />When the=rise is known, the horizontal distance is approximately:—the slope dist- <br />] <br />`4ce less the square of the rise divided by twice the slope distance. Thus: rise -i4 ft; <br />y' <br />&lope distance=302.6It. <br />Horizontal d1stance=302.0— 14 X 14 =3026—a32=30228 f't <br />s <br />2 X 9026 -- <br />MADE In V. a- A. • <br />