Laserfiche WebLink
VIII <br />TABLE IL - Radii, Ordinates and Deflection, Chord =100 f t. <br />Deg <br />Radius <br />Mid. <br />Ord, <br />Tan. <br />Diet, <br />I Def. <br />Dist. <br />Dfor, <br />1 Ft. <br />Deg. <br />Radius, <br />Mid <br />Ord. <br />Tan <br />Diet. <br />DEor <br />.1 Ft. <br />193.18 <br />1°'51' <br />2° 17' <br />20 58' <br />30 43' <br />lot. 1,5 <br />32° <br />t, <br />t. <br />t, <br />3 to <br />3 58' <br />9'10' <br />34377. <br />.036 <br />.145 <br />.291 <br />0.05 <br />7` <br />819.01.528 <br />36°. <br />6.1051 <br />fDigt. <br />2.10 <br />20 <br />17189. <br />.073 <br />.291 <br />.582 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />6.3959 <br />40° <br />2.20 <br />30 <br />11459. <br />109 <br />.436 <br />.873 <br />0.15' <br />30 <br />764.5 <br />1.637 <br />.6.5408 <br />S0 o8 <br />2.2040• <br />44° <br />8594.4 <br />'.145 <br />.582 <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.6857 <br />3° <br />3° 29' <br />2.30 <br />50• <br />6875:5 <br />.188 <br />.727 <br />1.454 <br />0.25 <br />8 <br />716.8 <br />1.746 <br />6.9765 <br />114-o6 <br />2.40 <br />1 <br />5729.6 <br />.218 <br />.873 <br />1.745 <br />0.30 <br />20 <br />688.2 <br />1.819 <br />7.266 <br />14.53 <br />2.40 <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855 <br />7.411 <br />14.82 <br />2.55, <br />20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15.11 <br />2.60 <br />30 <br />3819.8 <br />.327 <br />1.300 <br />2.618 <br />0.45 <br />9 <br />637.3 <br />1.965 <br />7.846 <br />15.69 <br />2.70 <br />40 <br />3437.9 <br />.364 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />614.6 <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />50 <br />. 3125.4 <br />.400 <br />1.600 <br />3.200 <br />0.55 <br />30 <br />603.8 <br />2.074 <br />8.281 <br />16.56 <br />2.85 <br />2 <br />2864.9 <br />.436 <br />1.745 <br />3.490 <br />0.60 <br />.40 <br />593.4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644.6 <br />.473 <br />1.891 <br />3.781 <br />0.65 <br />10 <br />573._7 <br />2.183 <br />8.716 <br />17.43 <br />3.00 <br />20 <br />2455.7 <br />.509 <br />2.036 <br />4.072 <br />0.70 <br />30 <br />546:4 <br />2.292 <br />9.150 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9,.585 <br />19.16 <br />3.30 <br />40 <br />2148.8 <br />.582 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />499.1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.618 <br />2.472 <br />4.945 <br />0.85 <br />12 <br />478.3 <br />2:620 <br />10.45 "20.91 <br />3.60 <br />a <br />1910.1 <br />.655 <br />2.618 <br />5.235 <br />0.90 <br />30 <br />459.3 <br />2.730 <br />10.89 <br />21.77 <br />3.73 <br />10 <br />1809.6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />13 <br />441.7 <br />2.839 <br />11.32 <br />2'2.64 <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30 <br />1437.3 <br />.764 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.2 <br />.168 <br />12.62 <br />25.24 <br />4.35 <br />50 <br />1195.0 <br />'.836 <br />3.345 <br />6.689 <br />1.15 <br />15 <br />383.1 <br />3.277 <br />13.05 <br />26 11 <br />4.50 <br />4 <br />1132.7 <br />.873 <br />3.490 <br />6.980 <br />1.20 <br />30 <br />370.8 <br />3.387 <br />13.49 <br />26.97 <br />4.60 <br />10 <br />1375.4 <br />.909 <br />3.635 <br />7.271 <br />1.25 <br />16 <br />359.3 <br />3.496 <br />13.92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />7.561 <br />1.30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 <br />1273.6 <br />.982 <br />3.926 <br />7.852 <br />1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228.1 <br />1.018 <br />4.Uri 1 <br />8.143 <br />1.40 <br />1S <br />319.6-3.935 <br />15.64 <br />31.29 <br />5.40 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />8.433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16.51 <br />33.01 <br />5.70 <br />5 <br />1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.0 <br />4.374 <br />17.37 <br />34.73 <br />6.00 <br />10 <br />1109.3 <br />1.127 <br />4.507 <br />9..014 <br />1.55 <br />21 <br />271.4 <br />4.594 <br />18.22. <br />36.44 <br />6.39 <br />-20 <br />1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1.60' <br />22 <br />262.0 <br />4.814 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />'1042.1 <br />1.200 <br />4.798 <br />9.596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />40 <br />1011.5 <br />1.237 <br />4.943 <br />9.886 <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.58 <br />7.20 <br />50 <br />982.6 <br />1.273 <br />5.088 <br />10.18 <br />1.75 <br />25 <br />231.0 <br />6.476 <br />21.64 <br />43.28 <br />7.50 <br />i <br />955.4 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />26 <br />'.697 <br />22.50 <br />44.99 <br />7.80 <br />10 <br />929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.018 <br />23.35 <br />46.69 <br />8.10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />206.7 <br />6.139 <br />24.19 <br />48:38 <br />8.40 <br />30 <br />881.9 <br />1.418 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.7 <br />6.360 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />859.9 <br />1,455 <br />5.814 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />0.583,25.S8 <br />.51.76 <br />9.00 <br />The middle ordinate in inches Tor any cot or lengm tti) is rise m vvi' <br />i multiplied by the trtiddle ordinate taken from the above tab e. Thus, if it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />�i be .0012X90OX2.183 or 2.36 inches. <br />4 '1'Aw.E TII. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />dius <br />RaS0 <br />M Sit chord <br />R = sin of = dei. angle <br />of aLengra <br />Curve <br />sin.0ef. ang. <br />123 Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />for 100 it, <br />30° <br />193.18 <br />1°'51' <br />2° 17' <br />20 58' <br />30 43' <br />lot. 1,5 <br />32° <br />181.39 <br />1° 59' <br />-2°-25' <br />3 to <br />3 58' <br />101.33 <br />34° <br />171.01 <br />2° 06' <br />2° 33' <br />3° 21' <br />4° 12' <br />10[.48 <br />36°. <br />161.80 <br />2° 23' <br />2° 41' <br />3° 33' <br />4° z6' <br />loi.66 <br />38° <br />153.58 <br />2° 20' <br />2° 49' <br />3° 44' <br />4° 40' <br />101.81 <br />40° <br />146.19 <br />2° 27' <br />20 57' <br />30 55' <br />4°.54 <br />102.o6 <br />42° <br />139.52 <br />2° 34' <br />3° 05 <br />4° 07' <br />S0 o8 <br />102.29 <br />44° <br />133-47 <br />127.97 <br />2° 42` <br />2° <br />3° 13' <br />21' <br />4° i8` <br />4' 29' <br />5°'2' <br />50 36' <br />102.53 <br />102.76 . <br />460 <br />48° <br />122.92 <br />48' <br />20 551 <br />3° <br />3° 29' <br />4° 40' <br />50 50' <br />103.00 <br />50° <br />118.31 <br />3° 02' <br />3° 38' <br />4° 51: <br />.6° 04' <br />103.24 <br />52° <br />114-o6 <br />3° 09' <br />3° 46' <br />5° 02' <br />6° 1 7 <br />103.54 <br />54° <br />tf0. 11 <br />3° 16' <br />3° 54' <br />5° 13' <br />6° 31' <br />103.84 <br />56° <br />1o6.5o <br />3° 22' <br />40 oz' <br />50 231 <br />6° 44' <br />104, 14 <br />58° <br />1 103.14 <br />3° 29'' <br />4° lo' <br />50 34' <br />6° 57 <br />704.43 <br />60° <br />100.00 <br />3° 35' <br />4° 18' <br />5° 44' <br />7° 11'" <br />104.72 <br />CURVE FORMULAS Ix <br />T = R tan :z I - R = T cot. ; 1 chord' <br />f - 50 tan 2 1 Chord def. <br />Sin.iD R= 50 R <br />Sin. I D = 50 Sin. ; D*o. chords = I <br />R E = Rex. sec_; I D <br />, 5� I <br />Sin.' D = o tan TE _ T tan } I Tan. def.= chord clef. <br />The square of any distance, divided by twice the radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule r, Multiply the given distance by .01745 (def.. for I° for 4 ft. <br />see -Table II.), and divide given deflection by the product. <br />ji Rule 2. Multiply given deflection by 57.3, and divide the product by <br />the given distance. <br />To find deflection fora given angle and distance. Multiply the angle <br />by .01745, and the product by the distance. <br />GENERAL DATA <br />RIGHT ANGLE .TRIANGLES. Square the altitude, divide by .twice the <br />base. Add quotient to base for hypotenuse. <br />Given Base loo; Alt. 10.10'-200=.5. 100-}-.5=101.5 hyp. <br />0 <br />Given Hvp. 11, Alt. 25.25'-200=3.125. 100-3:225=96.875=Base. <br />Error in first example, .002; in last, .045. <br />To find Tons of Rail in one mile oftrack: multiply weight per^yard <br />by 'I1, and divide by 7. <br />LEVELING. The correction for curvature and refraction,' in feet <br />and decimals of feet is equal to 0.574d2, where d is.the distance in miles. <br />I The correction for curvature alone -is closely, d'. The combined cor- <br />rection i6 negative. ; <br />11 PROBA13LE ERROR. If d,, dz, d3, etc. arethe- discrepancies of various <br />results from the mean, arid if Edi=the sum of the'squares of these differ- <br />ences and n=the number of observations, then the piobable error of the <br />mean= .dz <br />-0.6745 n(n-1) <br />SOLAR EPHEMERls. Attention is called to the Solar Ephemeris for <br />the current year, published by Keuffel.& Esser Co., and furnished 'upon <br />request. This handy booklet, 3;x6 in., has about 190 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and solar <br />attachments; directions and tables for determining the meridian and the <br />latitude from observations on the sun and Polaris; stadia measurements; <br />magnetic declination; arithmetic constants, etc. <br />TABLE IV -Minutes in Decimals of'a Deeree. <br />V <br />.0167 <br />11f <br />.1833 <br />211 <br />.3500 <br />311 <br />.5167 <br />410 <br />.6833 <br />5V <br />.8500 <br />2 <br />.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />'52 <br />.8667 <br />3 <br />.0500 <br />13 <br />.2167 <br />23 <br />-.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4. <br />.061617 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />5 <br />.0833 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.5833 <br />45 <br />.7-500 <br />55 <br />.9167 <br />6 <br />.1000 <br />t6 <br />.2667 <br />26 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />-56 <br />0333 <br />7 <br />.1167 <br />17 <br />.2833 <br />27 <br />.4500 <br />37 <br />.6167 <br />47 <br />.7833 <br />57 <br />.9.500 <br />8 <br />.1333. <br />18 <br />.3000 <br />28 <br />.4667 <br />38 <br />.6333 <br />48 <br />.8000 <br />58 <br />.9667 <br />9 <br />.1500 <br />19 <br />.3167 <br />29 <br />.4833 <br />39 <br />.6500 <br />49 <br />.8167 <br />59 <br />.9833 <br />10 <br />1 .1667 <br />20 <br />1 .3333 11 <br />30 1 <br />.:,000 11 <br />40 <br />1 .6667 11 <br />50 1 <br />.8333 11 <br />60 <br />11.0000 <br />V- -inches in 1_)ecinlals of a Poor. <br />1 3-32 }g 3-16 �.� 5-16 - % !� sy % ;x <br />.00055 2 .0078 .0104 .01.56 .0208 .0260 .0313 .0-117 .0521 .0625 .0729 <br />1 2 3 4 5 6 7 8 9 10 11 <br />.0833 .1667 .2500 I .3:33:1 I AI67 I .5ooO _583' .61667 7500 .8333 I _9167, <br />IN/ <br />