Laserfiche WebLink
tJ r n <br />0.4 <br />/o.'fZ� <br />vrr a` ••� ©dam o <br />r I. <br />S <br />� <br />wQ ' <br />TRIGONOMETRIC FORMULAx <br />B F AI <br />G a c a c <br />. a <br />C k <br />Rigbt Triangle Oblique Triangles i <br />i Solution of Right Triangles - <br />I <br />a Ib a b c c; <br />For Angle A. sin = o , cos = a , tan = b , cot = m , sec = T. cosec = a <br />Given Required I <br />72- <br />b A, B ,o tan A = b =cot B; -a — �/a$ ' = a 1 az <br />a, c ;A,B,b sinA=a=cosB,b=�/(cIa (e—a)=G�1—ar <br />. A, a &, b, a. <br />B=90°—A, b = a cot A, o= a <br />xin A. <br />c <br />b <br />B = 90°—A, a = b tan A, c= <br />cos A.'- <br />:_A, <br />A,e <br />B, a, b <br />B=90° A. a = c sin A, b = c cos <br />y' Solution of Oblique Triangles <br />Given <br />A, B,a <br />Required <br />b, c, C <br />sin { <br />a B <br />C=1'80°—(A+B),ca sin <br />= <br />bs insin <br />sin A <br />i.A, a, b <br />B,'c, C <br />b sin A <br />sinB= ,= 180°—(AB)= 2sinC <br />C+,c. <br />a sin A <br />a. b, C <br />A, B, o <br />A+B=180°—C, tan 1 (A—B)—b) tan <br />a <br />asin C +6 <br />' <br />G = <br />win A <br />A, B, C <br />s- a ,ein jA= J{s <br />N b <br />sinjB. 6 c— C-180°—(A+B) <br />a, <br />b, a <br />f, <br />Aiea <br />a+b+o . <br />8= , area <br />2 <br />A, b, c <br />Area <br />area = b c sin A <br />2 <br />_A, B, C, a <br />Area <br />a' sin.B sin C <br />area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />aitx ti0ce <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />Vert. angle= 51 101. From Table, Page IX. cos 511V= <br />` opo <br />51 <br />M9. Horizontal distance=319.4X.9959=318.09 ft. <br />Horizontal distance also= Slope distance minus slope <br />ppgte <br />ye <br />distance times (l—cosine of vertical angle). With the <br />Horizontal distance <br />xame figures as In the preceding example, the follow - <br />ing result is obtained. Cosine 5°101=.9959.1—.9959=.0041. <br />319.4X.0041-1.31, 319.4-1.31=318.09 It. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />toce less the square of the rise divided by twice the slope distance. Thus: rise=l4 it., <br />Slope distance 14 X 14 <br />-Sao ft. <br />Horizontal distance=9026— =3028-0.32=302 28H. <br />— <br />2 X 902.6 <br />' <br />MADE In V. 8, A, <br />