Laserfiche WebLink
TRIGONOMETRIC FORMUL& <br />3i' B T3 <br />c a c a c' <br />L b CA( b CA C <br />Right Triangle L� Oblique Triangles <br />Solution of Right Triangles <br />ForAngle A. sin = a , cos = b , tan = a , cot = b. cosec <br />sec = e , cos = <br />c a b a' b a <br />Given Required <br />72- <br />B ,o tan A = b = cot A a a2 } s = a ] +77a2 <br />a, a - A, B, b sin A =e = cos B, b c <br />A, a B, b, c B=90°—A, b= a cotA, c= a <br />sin A. z - <br />c $ <br />A, b B, a, a B— 90°—A, a = b tan A, c = b _ z <br />cos A. <br />�A, c B, a, b B = 90°—A, a = c sin A, b = c cos A, a J� <br />Solution of Oblique Triangles <br />Given Required a sin B <br />A <br />b= 180°—(A+B)0= <br />,C=,asinC , B, a b, e, C sin A sin A <br />b ein A <br />A, `a, b B, e, C sin B= a ,C = 180°—(A -¢ B), c = sin A <br />! a, b, ,C A, B, a' A+B=180°— C, tan +j (A—B)* (a—b) tan (A+B) <br />B) <br />�,Zs- a + b <br />93 <br />¢ sin C <br />sin A <br />a; b, a A, B, C s=a+b+a,sintA=Js <br />2 be <br />f. iiV siniB=�I a—a)(8—c) <br />a¢ e ).C=180°—(A-i B) <br />b, a Area s - d-♦ o <br />Rs 2 ,area = 8(s—a 8— (s—e <br />A, b, a Area ;-area = basin A <br />2 <br />A, B, C, a Area area = ° sin B sin C <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance <br />3'. <br />When the rise is known, th <br />ante less the square of the rise <br />31=318.09 ft. <br />approximately:—the slope dist- <br />ve distance. Thus: rise=14 ft., <br />34- <br />s'S' <br />