TRIGONOMETRIC FORMUL&
<br />3i' B T3
<br />c a c a c'
<br />L b CA( b CA C
<br />Right Triangle L� Oblique Triangles
<br />Solution of Right Triangles
<br />ForAngle A. sin = a , cos = b , tan = a , cot = b. cosec
<br />sec = e , cos =
<br />c a b a' b a
<br />Given Required
<br />72-
<br />B ,o tan A = b = cot A a a2 } s = a ] +77a2
<br />a, a - A, B, b sin A =e = cos B, b c
<br />A, a B, b, c B=90°—A, b= a cotA, c= a
<br />sin A. z -
<br />c $
<br />A, b B, a, a B— 90°—A, a = b tan A, c = b _ z
<br />cos A.
<br />�A, c B, a, b B = 90°—A, a = c sin A, b = c cos A, a J�
<br />Solution of Oblique Triangles
<br />Given Required a sin B
<br />A
<br />b= 180°—(A+B)0=
<br />,C=,asinC , B, a b, e, C sin A sin A
<br />b ein A
<br />A, `a, b B, e, C sin B= a ,C = 180°—(A -¢ B), c = sin A
<br />! a, b, ,C A, B, a' A+B=180°— C, tan +j (A—B)* (a—b) tan (A+B)
<br />B)
<br />�,Zs- a + b
<br />93
<br />¢ sin C
<br />sin A
<br />a; b, a A, B, C s=a+b+a,sintA=Js
<br />2 be
<br />f. iiV siniB=�I a—a)(8—c)
<br />a¢ e ).C=180°—(A-i B)
<br />b, a Area s - d-♦ o
<br />Rs 2 ,area = 8(s—a 8— (s—e
<br />A, b, a Area ;-area = basin A
<br />2
<br />A, B, C, a Area area = ° sin B sin C
<br />2 sin A
<br />REDUCTION TO HORIZONTAL
<br />Horizontal distance
<br />3'.
<br />When the rise is known, th
<br />ante less the square of the rise
<br />31=318.09 ft.
<br />approximately:—the slope dist-
<br />ve distance. Thus: rise=14 ft.,
<br />34-
<br />s'S'
<br />
|