Laserfiche WebLink
TADLU IL - Radii, Ordinates and Deflections. Chord -100 ft. <br />Deg. <br />Radium <br />Mid. <br />Ord. <br />Tan. <br />Dist. <br />Def• <br />Dist. <br />lfor <br />1 Ft <br />Aeg. <br />Radius <br />Mid. <br />Ord. <br />Tan <br />Dist. <br />•D€.• <br />-Dist. <br />Da' <br />I Ft. <br />2°.17' <br />20 58' <br />3° 43' <br />for - 15 <br />320 <br />181.39 <br />t0 59' <br />2° 25` <br />3° 10' <br />3° 58' <br />101-33 <br />34° <br />0°l0 <br />34377. <br />.036 <br />.145.231 <br />4° 12' <br />0.05 <br />7° <br />819.0 <br />1.528 <br />6 105 <br />12.21 <br />2.1,0 <br />20 <br />17189. <br />073 <br />.291 <br />.582 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />6.3955 <br />12.79 <br />2.20 <br />30 <br />'11459. <br />.109 <br />:436 <br />.873 <br />0.15 <br />30 <br />764.5 <br />1,637 <br />6.540 <br />13.08 <br />2.25 <br />40 <br />8594.4 <br />.145 <br />.582 <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.685 <br />13.37 <br />2-30 <br />50 <br />6875.5 <br />.182 <br />.727 <br />1.454 <br />0.25 <br />S' <br />716.8 <br />1.746 <br />6.976 <br />13.95 <br />2.40 <br />1 <br />5729.6 <br />.218 <br />.573 <br />1.745 <br />0.30 <br />20 <br />688.2 <br />1.819 <br />7.266 <br />14.53 <br />2.50 <br />10 <br />.4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855 <br />7.411 <br />14.83 <br />2.55 <br />.20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15.11 <br />2.69 <br />30 <br />3919.8 <br />.327 <br />1.300 <br />2.618 <br />0.45 <br />9 <br />637.3 <br />1.965 <br />7.546 <br />15.69 <br />2.70 <br />40 <br />3137.9 <br />.364 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />614.6 <br />2.037 <br />S.116 <br />16.27 <br />2.80 <br />50 <br />3123.4 <br />.400 <br />1.600 <br />3.200 <br />0.55 <br />30 <br />603.8 <br />2.074 <br />8.281 <br />1G. 56 <br />2.85 <br />2 <br />2364.9 <br />.436 <br />1.745 <br />3.490 <br />0.60 <br />40 <br />593.4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644.6 <br />.473 <br />1.801 <br />3.781 <br />0.65' <br />10 <br />573.7 <br />2.183 <br />8.716 <br />17.43 <br />3.00 <br />20 <br />2155.7 <br />.509 <br />2.036 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />9:150 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2,402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2148.8 <br />.582 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />499.1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.61S <br />2.472 <br />4.945 <br />0.85 <br />12 <br />478.3 <br />2.620 <br />10.45 <br />20.91 <br />3.60 <br />8 <br />1910.1 <br />.655 <br />2.618 <br />5.235 <br />0.90 <br />30 <br />459.3 <br />2.730 <br />10.S9 <br />21.77 <br />3.75 <br />10 <br />1809.6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />13 <br />441.7 <br />2.839 <br />11.32 <br />22.64.3.90 <br />20 <br />1719.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30 <br />1637.3 <br />.764 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />T.10 <br />30 <br />396.2 <br />3.168 <br />12. G2 <br />25.24 <br />4.35 <br />50 <br />1495.0 <br />.830 <br />3.345 <br />6.689 <br />1.15 <br />15 <br />383.1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />4 <br />1432.7 <br />.873 <br />3.490 <br />6.930 <br />1.20 <br />: 30 <br />370.8 <br />3.387 <br />13.49 <br />2G.97 <br />4.65 <br />10 <br />1375.4 <br />.909 <br />3.635 <br />7.2e71 <br />1.25 <br />16 <br />359.3 <br />3.496 <br />13.92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />7.561 <br />1.30 <br />30 <br />348.5'3.606 <br />14.35 <br />23.70 <br />4.95 <br />30 <br />1273.6 <br />:982 <br />3:920 <br />7.852 <br />1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />6.10 <br />40 <br />1228.1 <br />1.018 <br />4.071 <br />8.143 <br />1.40 <br />48 <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />8.433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16.51 <br />33.01 <br />5.70 <br />5 <br />1146.3 <br />1.091 <br />4.362 <br />5.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37' <br />34.73 <br />6.00 <br />10 <br />1109.3 <br />1.127 <br />4.507 <br />9.014 <br />1.55 <br />ill <br />274.4 <br />4.594 <br />18.22 <br />36.44 <br />6.30 <br />20 <br />1074.7 <br />1:164 <br />4.653 <br />9.305 <br />1.60 <br />'22 <br />262.0 <br />4.814 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />1042.1 <br />1.200 <br />4.798 <br />9.596.1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />40 <br />1011.5 <br />1.237 <br />4.943 <br />9.886 <br />1.70/ <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.58 <br />7.20 <br />50 <br />982.6 <br />1.273 <br />5.088 <br />10.18 <br />1.75 <br />25 <br />231.0 <br />6.476 <br />21.64 <br />43.28 <br />7.50 <br />e <br />955.4 <br />1.309 <br />5.234 <br />10.47 <br />].SO <br />26 <br />222.3 <br />5.697 <br />22.50 <br />4.1.99 <br />7:80 <br />10 <br />929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.918,23.35 <br />46.69 <br />8.10 <br />20 <br />905.1 <br />1.382 <br />5.b24 <br />11.05 '1.90 <br />28. <br />206.7 <br />6.139 <br />24.19 <br />48.38 <br />8.40 <br />30 <br />S81'.9 <br />1.418 <br />5.669 <br />11.34 <br />1.95 <br />.29 <br />199.7 <br />6.360 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />559.9 <br />1.455 <br />5.814 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />The middle ordinate'n inches for any cor(I of length (0) is equal to .0012 C' <br />multiplied by the ((fiddle ordinate taken from the aboVoL table. Thns, if it <br />desired to bend it 30 ft, rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X90OX2.183 or 2.36 inches. <br />7TA71LE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />�.1 <br />Radius <br />s0 <br />r5 sub chord _ sin of }def, angle <br />H <br />Length <br />of arc <br />for 100 ft.' <br />sin, s def. ang. <br />12,5 Ft. <br />15 Ft. <br />20 Ft. <br />25 -Ft. <br />.6833 <br />Ig3.18. <br />I° 51' <br />2°.17' <br />20 58' <br />3° 43' <br />for - 15 <br />320 <br />181.39 <br />t0 59' <br />2° 25` <br />3° 10' <br />3° 58' <br />101-33 <br />34° <br />171.01 <br />2° 06' <br />2° 33' <br />3° 2I' <br />4° 12' <br />101.48 <br />36° <br />161-8o <br />2° 13' <br />2°41' <br />3° 33'. <br />4° 26' <br />ioi.66 <br />380 <br />153.58 <br />z° 20' <br />2° 49 <br />3,41" <br />4° 40' <br />l0t_8,i <br />40° . <br />146.19 <br />2° 27' <br />2° 57' <br />3° 55' <br />4° 54 <br />Ioz.ob <br />42' <br />139.52 <br />2' 34' <br />3° o5' . <br />4° 07' <br />5° 08 <br />102."29 <br />44° <br />13347 <br />2° 413° <br />13' <br />4' 18' <br />'5°-22' <br />102.53 <br />460 <br />127.97 <br />2° 48. <br />3°21' <br />4° 29'. <br />50 36' <br />102.76 <br />48 <br />122.)2 <br />2° 55` <br />3°29' <br />4° 40'- <br />5050' <br />103.00. <br />So° <br />118.3' <br />3' 02' <br />3° 38' <br />40 51' <br />6° 04' <br />103.24 <br />52' <br />114,06 <br />3° 09' <br />3° 46' <br />5° 02' <br />60 17' <br />103..54 <br />54° <br />110.11 <br />3° 16' <br />3'-54' <br />5° 13' <br />6° 31' <br />103.84 <br />g6° <br />1o6.5o <br />3°-22' <br />4° 02' <br />5° 23' <br />6° 44 <br />104.14 <br />58° <br />103.14 <br />3° 29� <br />4° 10' <br />S° 34 <br />6° 57 <br />104 43 <br />60° <br />100.00 <br />3° 35' <br />4° 18` <br />5° 44' <br />7° 11' <br />10:1:72 <br />ix <br />CURVE FORMULAS <br />T= R tan ; E R T cot. I chords <br />T r 5o fan a I Chord lief. _ <br />Sin. .'r D _5011 <br />Si., Z D No. chords = f <br />lZ E= R ex. see e I D <br />Sin. 2 D- <br />go, l E = T tan 3 I Tan. def.,- 1 chord def. <br />The square of any distance, divided bytwice the radius; .will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule I. Multiply the given distance by .o1745 (def. for I° for1 ft. <br />see Table IL), and divide given deflection by the product. <br />Rule 2. Multiply given defection by 57 .3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. Nlultiply the ankle <br />by .01745, and the product by the distance. <br />GENERAL DATA <br />RIGHT ANGLE, .TRIANGLES. Square the altitude, divide by twice the <br />base. Add quotient.to base for hypotenuse. <br />Given -Base ioo, Alt. Io.1oE 2oo=.5: loo+.5=too.,5 hyp. <br />Given Hy -p. too, Alt. 25.25E-200=3.125.'ioo-3:125=o6.87a=Base. <br />Error in first example,..002; in last, .045. <br />To find Tons of Rail in one mile of track: multiply weight per yard <br />by i i, and divide by 7. <br />LEVELINri.' The correction for curvature and . refraction, in feet <br />and decimals of feet is equal to 0.574dE; where d is the distance in miles. <br />The correction for curvature alone is closely, 102. The -combined cor- <br />rection is- negative. <br />PRO13ABLF ERROR. If di, d2, da, etc. are the discrepancies of -various <br />results from the mean, and if ZdE=the srim of the squares of these differ- <br />ences and n -the number of observations, then the probable error of ,the <br />mean= Ids <br />O.t3745 n(n-1) <br />SOLAR EPHEMERIS. ,Attention is called to the Solar Ephemeris for <br />the -current year, published by Keuffel & Esser Co., and furnished uion <br />request. This handy booklet, 38x6 in., has about 190 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and solar . <br />attachments; directions and tahles for determining the meridian and Clic <br />latitude from observations on the sun and Polaris; stadia measurements; <br />magnetic declination; arithmetic constants, etc. <br />TABLE IV. -Minutes in Decimals ofa Degree. <br />1 <br />.0167 <br />HP <br />.1833 <br />21+ <br />.3500 <br />31 <br />.5167 <br />41� <br />.6833 <br />51' <br />.8500 <br />2 <br />-.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />.8667 <br />3 <br />.0500 <br />13 <br />.2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4 <br />',0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />50933 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.5833 <br />45 <br />.7800 <br />55 <br />.!1167 <br />6 <br />.1600 <br />16 <br />.26(17 <br />26.4333 <br />36 <br />.6000 <br />46 <br />.7067 <br />56 <br />.0333 <br />7 <br />1167 <br />17 <br />2833 <br />2 7 <br />A50 <br />37.7533 <br />57 <br />8 <br />.1333 <br />IS <br />5000 <br />28 <br />4667 <br />38 <br />.6333 <br />48 <br />.8000 <br />58 <br />.9657 <br />9:1667-'.. <br />1500. <br />19 <br />.3167 <br />29 <br />.4833' <br />39 <br />.6500 <br />49 <br />.816-159 <br />.9833 <br />10 <br />.1667 <br />20 <br />.3333 <br />30 <br />.5000 <br />40 <br />.6667 1 <br />50 <br />.8333 <br />60 <br />1.0000 <br />1 ani,[t %'.--Inches in Decimals of a Foot. <br />1-16 <br />3-32 <br />y9 <br />3-16 <br />i,� <br />;-16 <br />.6052 <br />.0078 1 <br />.0101 <br />.0208 <br />.o2s0 <br />.0313 <br />I .O3E7 <br />I.05z1 <br />.os2.; <br />.oY'z0 <br />-1 <br />'? I <br />�_.oiss <br />3 <br />4 <br />:i <br />G <br />7 <br />111 S <br />L 9 <br />I <br />10 <br />11 <br />0833 <br />.166T <br />.2500 <br />.3333 <br />.4167 <br />,U00 <br />.5833 <br />.6667 <br />.7500 <br />.8513 <br />91t;7 <br />