Laserfiche WebLink
VIII <br />TABLE IL - Radii, Ordinates'and Deflections. Chord =100 ft. <br />Deg. <br />Radius <br />Mid, <br />Ord. <br />Tan. <br />Diat, <br />Def. <br />Dist. <br />D°r <br />1 rt. <br />Deg. <br />Radius <br />. Mid. <br />Ord. <br />Tan <br />Dist. <br />Dcf. <br />Dist. <br />Dol' <br />) r t. <br />193.18 <br />t, <br />it. <br />it. <br />ft. <br />Iol.r5 <br />32° <br />it. <br />t <br />2° 25' <br />t. <br />3° 58' <br />0'10 <br />34377. <br />.036 <br />.145 <br />.291 <br />0.05 <br />7° <br />819.0 <br />1.528 <br />.105 <br />12.21 <br />2.10 <br />20 <br />17189. <br />.073 <br />.291 <br />.582 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />.6 <br />6.395 <br />12.79 <br />2.20 <br />30 <br />11459. <br />,109.436 <br />4° , <br />.873 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.08 <br />2.25 <br />40 <br />5591.4 <br />'.145 <br />.582 <br />1.164: <br />0.20 <br />40 <br />7.17.9 <br />1.673 <br />6.685 <br />t3. 37 <br />2.30 <br />50 <br />6875.5 <br />.182 <br />.727 <br />1.454 <br />0.25 <br />8 <br />71G.8 <br />1.740 <br />6.976 <br />13.95 <br />2.40 <br />1 <br />5729.6 <br />:218 <br />.873 <br />1.745 <br />0.30 <br />20 <br />688.2 <br />1.819 <br />7.266 <br />14.53 <br />2.60 <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855 <br />7.411 <br />14.83 <br />2.1. <br />20 <br />41-97:3 <br />•.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.592 <br />7.556 <br />15.11 <br />2.60 <br />30 <br />3819.8 <br />.327 <br />1.300 <br />2.618 <br />0:45 <br />9 <br />637.3 <br />1.965 <br />7.846 <br />15.69 <br />2.70 <br />40 <br />3137.9 <br />.364 <br />1.454 <br />2.909 <br />0. <br />20 <br />614.6 <br />2.037 <br />8.136 <br />16.27 <br />2.SO <br />50 <br />3125.4 <br />-.400 <br />1.600 <br />3.200 <br />0.55 <br />30 <br />603.8 <br />2.074 <br />8.281 <br />16.56 <br />2.85 <br />2 <br />2864.9 <br />.436 <br />1.745 <br />3.490 <br />0:60 <br />40 <br />593.4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644.6 <br />.473 <br />1.591 <br />3.781.0.65 <br />.10 <br />573.7 <br />2.153 <br />8.716 <br />17,43 <br />3.00 <br />20 <br />2155.7 <br />.509 <br />2.036 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />9.150 <br />15.30 <br />3. 1.-) <br />30 <br />2292.0 <br />.545 <br />2.181 <br />'4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />.2148.8 <br />.582 <br />2.327 <br />.4.654 <br />0.80 <br />30 <br />499.1'2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.618 <br />2.472 <br />4.945 <br />0.85 <br />12 <br />478.3'2.620 <br />10.45 <br />20.91 <br />3.60 <br />8 <br />,1910.1 <br />.655 <br />2.618 <br />5.235 <br />0.90 <br />30 <br />459.3 <br />2.730 <br />10.89 <br />21.77 <br />3.75 <br />10 <br />1909.6 <br />:691 <br />2.763 <br />5.526 <br />0.95 <br />13 <br />441.7 <br />2.839 <br />11.32 <br />22.64 <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2.908 <br />5,. 817 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30' <br />1637.3 <br />.764 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />1:10 <br />30 <br />396.2-3.168 <br />12.G2 <br />25.24 <br />4.35 <br />50 <br />1495.0 <br />.836 <br />3.345 <br />6."9 <br />1:15 <br />15 <br />383.1,3.277 <br />13.0.5 <br />26:11 <br />4.50 <br />S <br />1132.7 <br />.873 <br />3.490 <br />6.950 <br />1.20 <br />- 30 <br />370.8 <br />3.387 <br />13.49 <br />26.97 <br />4.65 <br />10 <br />1375.4 <br />.909 <br />3.635 <br />7.271 <br />1.25 <br />16 <br />3;79.3 <br />3.496 <br />13.92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />7.56 11.30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 <br />1273.6 <br />.982 <br />3.926 <br />7.852'1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228.1 <br />1.018 <br />4.071 <br />8x143 <br />1.40 <br />128 <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />50 <br />.1185:8 <br />1.055 <br />4.217 <br />80433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16:51 <br />33.01 <br />5.70 <br />6 <br />1146.3 <br />1.091 <br />4.362 <br />-8.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37 <br />34f73 <br />6.00 <br />-10- <br />1109.3 <br />1.127 <br />4.507 <br />9.014 <br />1.55 <br />21 <br />274.4 <br />4.594 <br />15.22 <br />36'44 <br />6.30 <br />20- <br />•1074.7 <br />1.164 <br />4.653 <br />0.305 <br />A .G0.• <br />22 <br />262.0 <br />4.814 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />1042.1 <br />1.200 <br />4.798 <br />9.596 <br />1'.65 - <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />40 <br />1011.5 <br />1.237 <br />4.943 <br />'.9.886 <br />1.70' <br />24 <br />240.:5 <br />5.255 <br />20.79 <br />41.58 <br />7.20 <br />50 <br />082.6 <br />1.273 <br />5.088 <br />10.18; <br />1.75 <br />20 <br />231.0 <br />5.476 <br />2164 <br />43.28 <br />7.50 <br />6 <br />955.4 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />26 <br />222.3 <br />5.697 <br />22.50 144.99 <br />7.So <br />10 <br />929.6 <br />1.346 <br />5.37910.76 <br />1.85 <br />27 <br />214.2 <br />5.918 <br />23.35 146.69 <br />8.10 <br />20 <br />'905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />206.7 <br />$.139 <br />24.19 148.38 <br />8.40 <br />30 <br />881.9 <br />1.418 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.7 <br />6.360 <br />25.04 150.07 <br />8.70 <br />40 <br />859.9 <br />1.455 <br />5.814 <br />11.63 <br />2.00 1 <br />30 <br />193.2 <br />6.583 <br />25.88 151.76 <br />9.00 <br />The middle ordinate in inches for an}• cord of length (C) is equal to .0012 C' <br />multiplied by the ]riddle ordinate taken from the above table. Thus, if it <br />iesired to bend n 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X90OX2.183 or 2.36 inches. <br />TABLE111. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Radius <br />5U <br />Y, sub chord <br />=sin of ' <br />R def._ angle <br />of aLenre <br />Curve <br />sin, § def. ang. <br />12.5 Ft. <br />15 Ft, <br />20 Ft. <br />'25 Ft. <br />for 100 ft. <br />30° <br />193.18 <br />I° 51' <br />2° 17' <br />2° 58'3° <br />43' <br />Iol.r5 <br />32° <br />181.39 <br />1° 59' <br />2° 25' <br />3° 10' <br />3° 58' <br />101:33 <br />34° <br />171.01 <br />2° 06' <br />2° 33'3° <br />21' <br />4° 12' <br />loI.48 <br />36° <br />161.8o <br />2° 13' <br />2' 411 <br />3° 33' <br />4°-26' <br />1of.66 <br />38° <br />153.58 <br />2° 20' <br />2° 49'. <br />3° 44 <br />4°,40' <br />101.8,; <br />40° <br />146. 19. <br />2° 27' . <br />2° 57' <br />3° 5J' <br />4° , <br />I0z.06 <br />42° <br />139.52 <br />2° 34' <br />3° 05' <br />4° 07' <br />5° 06 <br />102.2(9 <br />44° <br />133-47 <br />2° 41' <br />3° 13' <br />4° IS' <br />S° 22' <br />102.53 <br />46° <br />127.97 <br />2° 48' ' <br />3° 21' <br />4°.29' <br />5°-36' <br />102.76 <br />48° <br />122.92 <br />2° 55' <br />3°. 29' <br />4° 40' <br />5° 50' <br />-103.00 <br />50° <br />118.31 <br />3° 02 <br />3° 38' <br />4°, 51' <br />6° 04'' <br />103.24 <br />52° <br />114,o6 <br />3° 09' <br />3° 46' <br />5° 02' <br />6° 17' <br />103. ;54 <br />54° <br />110.11 <br />3° 16' <br />3°54 <br />5° 13' <br />6° 31' <br />Ici3.. 84 <br />50 <br />1o6.5o <br />3°22' <br />4° 02' <br />5° 23'6° <br />44' <br />104.14 <br />580 <br />103.14 <br />3' 29' <br />4°•10, <br />5°34' <br />6° 57' <br />104.43 <br />60° <br />100. o0 <br />3°35' <br />4°18' <br />5°44' <br />7°•I1' I <br />10+.72 <br />rX <br />CURVE FORMULAS <br />T= R tan a. 1 R= '1' cot. z 1 chord' <br />T ._ 5o tan.} I Chord def.._ <br />Sit]. ; ll 50 R <br />It <br />Sin 12 D _ 50 Sin. § D No. chordsl- <br />Az E = R ex. sec <br />Sin, z D = S0 tan I L = 9' tan I 1 Tan. def. = z chord def. <br />T , <br />The square of any distance, divided by twice. the radius, will. equal <br />the distance from tangent to curve, very nearly, <br />'To find angle for a given distance'and deflection. <br />Rrdr 1. Multiply the given distance by .01745 (def. for i' for I ft. <br />see Table 11.), and divide given deflection by the product. <br />Rule 2. -Multiply given deflection by 57.3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. iblultiply the angle <br />by .01745, and,the product by the distance. <br />GENERAL DATA <br />RIGHT ANGLE TRIANGLES." Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Given Base loo, Alt. 16.10x-200=.5. 100+.5=[00.,5 liyp. <br />Given Hyp. ioo, Alt. 25.25'=200-3.125: 100-3.125=96.875=Base. <br />Error in first example, .002; in last,'.045: <br />To find Tons of Rail in one mile of track: multiply weight ]xr yard <br />by 11, and divide by 7. "• <br />LEVELING. The correction for curvature and refraction, in -feet <br />and decimals of feet is equal to 0.574d2, where d is the distance i6-ruilcs. <br />The correction for curvature alone is closely;, ;d'. T.he .combined cor-, <br />rection is negative. <br />PROBABLE ERROR. If d1, d2, d,, etc. are the -discrepancies of varioils <br />results from the mean, and if 2d'=the sum of the squares of these.differ- <br />ences and n=the n6mber of observations, then the probable error of the <br />mean= vdz ' <br />=1--0.674i <br />SOLAR EP11ENfER1S. Attention is called to the Solar F.,phemeris for <br />the current year, published by Keuffel & Esser Co., and furnished inion <br />request. This handy booklet, 3;x6 in., has about 190 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and solar <br />attachments; directions. and tables for determining the meridian and the <br />latitude from observations on the sun and Polaris; stadia measurements; <br />magnet ic'declination; arithmetic constants, etc. <br />TA13LF IV.-D'linutes in Decimals of a Degree. " <br />t/ <br />.0167. <br />11' <br />.1833 <br />211 <br />.3500 <br />31' <br />.5167 <br />41' <br />.6833 <br />51' <br />.8500 <br />2 <br />.0.333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42' <br />.7000 <br />52 <br />.8667 <br />3 <br />.0500 <br />.13 <br />.2167' <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />.53 <br />.8833 <br />4 <br />.0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />:5 <br />.0833 <br />15 <br />.2500 <br />. 25 <br />.4167 <br />35 <br />.5533 <br />45 <br />.7-500 <br />55 <br />.9167 <br />6 <br />.1000 <br />16,2667 <br />26 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />56 <br />.9333 <br />7 <br />.1167 <br />17 <br />.2833 <br />27 <br />.4500 <br />37 <br />.6167 <br />47 <br />•7833. <br />57 <br />.9500 <br />8 <br />.1333 <br />18 <br />.3000 <br />28 <br />.4667 <br />33 <br />.6333 <br />48 <br />.8000 <br />58 <br />.9667 <br />9 <br />.150019 <br />.3167 <br />29 <br />.4833 <br />39 <br />.6500 <br />49 <br />.8167 <br />59 <br />.9533 <br />10 <br />.1667 1 <br />1 20 <br />1 .3333 <br />30 <br />.5000 <br />40 <br />.6667 <br />50 <br />.8333 <br />60 <br />1-0000 <br />TAR1.1t 1`. --Inches in Decimals of a Door. <br />1-16 3-3'2 }'g 3-16 J,i 5-16 '•e ss a� ;ti <br />0052 (.0048 I .0104 0156 I .0208 I .0260 I .0313 I .0417 .0521 .062.5 .0720 <br />1 3 I.1 1 :i 1 �i i 3 I 9 10 77 <br />.0833 .1667 .2500 .3:433 .4167 SOOo SS3a 6667 7500 1 .8333._ .9167 <br />