Laserfiche WebLink
TRIGONOMETRIC FORMUL& <br />gid? A e a <br />bb G <br />Right Triangle C L-7_ Oblique Triangles <br />Solution of Right Triangles. <br />'For An le'A, sin = a b ° t <br />g C , coe = c tan= b , .cot = _a ,sec = b , cosec = a <br />I (liven Required <br />!F • ;,, a, b. , meq, B ,e tan A _ � = cot B; c ='V -5a +- 1+ <br />i <br />a, e <br />A, a _B, ii, c B=90°=A, b = a cotA, c= ¢ <br />' sin A. <br />b <br />"A, b • B, a, c B = 90°-A, a = b tan A, e = coe A ' <br />A, c B, a, ',b B = 94°—A, a = c sin A, b =, c cos A, <br />Solution' of Oblique Trianglea <br />t i Given Required a sin B ¢sin C <br />A, B, a b, c, C" b = sin A ' C =,1.80°—( sin A <br />b sin A a sin C. . <br />A, a, b B, c, C . sin B = . a , C = 1800—(A + B) , c = sin A <br />a, bC A, B, c A+B=180°— C, tan (A—B)= (¢—b) tan ; (A+.B) + <br />ab <br />� _¢ sin C <br />�l ein A <br />I a, b, a A, B, C s — ¢+�+e,sin jA=�(y <br />sin3B= ac ,C-180°—(A+B) <br />a, b, c Areaa — a+�(3— ) (.v—c) <br />A, b, c Areab c sin A <br />area — 2 <br />�A, B, t ; a Area arra = <br />as sin B —Sin C <br />2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance =Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />e iv5��ce "Vert. angle=ti° 10+. From Table. Page IX. cos 51 I(Y= <br />8959. Horizontal dislance=319.4X.9959=919.09 ft. <br />Slop A�Ile iyX Horizontal distance also=$lope distance minus slope <br />ye distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 10'=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 it. <br />j When the. rise is known, the horizontal distance is approximately:—the slope dist- <br />ince less the square of the rise divided by twice the slope distance. Thus: rise=14 ft, <br />" slope distance=302.8 ft Horizontal distance=02. <br />3e— 14 X 14 =3028-0 32-302.28 it. <br />2 X 302 8 <br />MADE <br />