Laserfiche WebLink
TRIGONOMETRIC FORMULX <br />�( a a a <br />i L A A - C <br />b. C b C - G <br />r"'-� Right Triangle Oblique Triangles <br />y� 7,vc y 'Solution of Right Triangles <br />j? a b a- b c c <br />J. - .For Angle A. sin = c , cos =o , tan= b , cot= a , scc = b , cosec= <br />a <br />y. Given Required -)- s ! -- _"_------ ----� a, b A, B ,c tan.A = b = cot B, c = a2 2 = a <br />' 1 : <br />c A, B, b sin A = = cos B, b = �/ (c+a (e—a) = c <br />.II vv <br />--" A, a B, b, c B=90°— b =a cot. c= a <br />sin A. <br />A, b B, a, c B = 90°1 , a = b tan A, c = G <br />cos A. <br />A, c B, a, b I B — 90*— A, a = c sin A, b= c cos A, <br />23 Solution of Oblique Triangles <br />Given Required <br />asinB —asC <br />A, B, a b, e, C b ` <br />sin A ' C = 180*—(A + B), c in <br />— sin A <br />0 r y t b sin A ,— asin C <br />A, a, b B, c, C sinB= a ,C=180 (A+B),c= sin <br />o , (a—b) tan 1,(A+B) <br />(' { �' • ,)/ )' _ a, b, C A, B, c A+B=180 — G, tan l}(A—B)=a + b , <br />'; t .� asin C <br />3 <br />- q a+b+c <br />a, b, c- A, B, C s .sin ,sin IA= b c <br />8 - . s—a) s—c <br />I J v + Bin +}B=� a c ,C-180'— (A+B) <br />i T Y a b+ <br />a, b, e. Area s= 2 , area =s(s—a I, ) (s—c <br />CIO� -b, c Area b. a sin A <br />A <br />, area = 2. <br />a' sin B sin C <br />( A, B, C, a Area area = <br />O 2 sin A <br />I J 2 1 REDUCTION TO HORIZONTAL <br />it � � � .. _ : Y``-'•'�`� � Horizontal distance=Slope distance multiplied by the '- <br />I ` e cosine of the vertical angle. Thus: slope distance=319.4ft. <br />1 %' �h gt9re Vert. angle=5° 101.' From Table, Page IX. cos 50 W= <br />J - 3v4' 9969. Horizontal distance=319.4X.9959=318.09 Pt <br />Horizontal:distarice also= Slope distance minus slope <br />NNyNN( <br />�e <br />lf� r,"1 distance times ,(1—cosine of vertical angle). With the <br />'.. _ same figures as in the preceding example, the follow- <br />' I C Horizontal distance ing result Is obtained. Cosine 5°101=.9959.1—.9959=.0041. <br />919.4X.0041=1.91.919:4-1.91=318.09 ft. <br />When the,rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft, <br />a. slope distance=3028 ft. Horizontal distance—`3M6 — 14 X 14 2X302.8 028 =8-0.32=90228 & <br />�� - - •� - �-- .. - .. . <br />MADE IN U. <br />