Laserfiche WebLink
b J t <br />1:z� <br />`� �':c ' .'' r 3S .'TRIGONOMETRI'C =FORMULAE - <br />GO 25 3 • • ' <br />0 4 ) io 'S <br />B N B <br />32 <br />pU 60Z V '� C <br />7 0 .iZ 6211 3a a a a <br />� �• �% /76 - S'/5 �--03 0 <br />15 1�.. " <br />, <br />Right Triangle Oblique Triangles <br />0 <br />-z,-7 o. ,' 14- 3,0-D Solution of Right Triangles <br />F . a b a. b' c e <br />3O; For Angle A.. •sin = c , cos= c , tan L , cot = a , sec = b, cosec = a <br />2j — DO '» Given Required — a — — — s <br />a, b A, I3 ;c tan d b cot B, c a2 -F• 2 a az <br />ll <br />¢?/,�� t {� a,, e. A, ,B,. L <br />sin A = o = coo B, b = (c+a) (tea) = o J 1— p <br />t. 2tia. 7 h �, 1 - a <br />G :�Z A; a. B,'b,.4 B=90°—A, b = a cotA, c= <br />- sin A. <br />A, B, .a, c B = 90°—A, a b tan A, c = b <br />.. cos A., <br />A,c B, a, b B=90°—A,a=cainA,b=ccos A, <br />�-200 ,ZG� Solution- of. Oblique Triangles <br />(e G3T Given Required a'sin Bim. ° a sin C <br />lD� ; •j vA B L = C-- 180 — A, B .c = <br />-�,� 1 ,. ;'a •.u, P, -G' sin, 'Li ( 'i- )', sin A 1� <br />a 4�ZI b`sEn�i aainC <br />'r n i' �n ( % .� 1 �A,B c, C sin lj `a ,C = 180°—(A { B), c = sin A <br />(a—b) tan (A+B) <br />b C* A,`B, c A } B=180o — C, tan j (A=B)= a + b <br />"-� a sin C <br />r i c sin A '( <br />x <br />pp3g �S j a+b+c <br />,a� b' c A' B, C s= 2 'aio�A- � . <br />3 ® b c <br />r <br />(s—a)(8_4:=(A B <br />4, t• (l A� L v. ( ein I,B= C=180 + ) <br />a c <br />F <br />a, b, a Area s = a+2+c J area = s(s—a (a— )`(x—c) <br />\ besin A <br />111 a7--4- f (70 i A, b, e, Area area = 2 <br />r ��1 <br />+a' sin B sin C <br />�� �I ���:, ;iA, B, G; a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL' <br />X i Horizontal distance=Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance=319.4 ft. <br />�st'°e Vert. angle=b° 101. From Table, Page IX. cos b° 101= <br />'•; �%� `b (7' /1.�` oQe ass <br />9959. Horizontal distance=319.4X.9959=318.09 fL <br />S ,Q l (£i Ao�1e Horizontal distance also=Slope distance minus slope <br />iJ v distance times (1—cosine of vertical angle). With the <br />_ _ e same figures as in the preceding example, the follow- <br />r G �/l `. n /L Horizontal distance irg result is obtained. Cosine 501o,=.9959.1 .9959=.0041. <br />1 IV/ 1 <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />dist- <br />When the rise is known, the horizontal distance is approximately:—the slope AI / 4 `anee less the square of the rise divided by twice the slope distance. Thus: rise=14 fL. <br />slope distance=3028 ft Horizontal distance=3028-2 X 302.8 14 X 14 —302. t. <br />8-0.32=302.28 f ` <br />MAGE IN V. S. A. I <br />k,�4 <br />