Laserfiche WebLink
,i <br />TRIGONOMETRIC F'ORMULIE i <br />TP / �'� 9 . s "jam• <br />B <br />G a G a G a z <br />p Z �t 4r �4 : b d d b Q A G <br />S, 37 :saar�t �e <br />Right Triangle Oblique Triangles r <br />TPI- s; Solution .of Right Trian lea <br />Tf' ! 9'. y :sem, I a g <br />a b a b c <br />cy j p -ten= cot = - ,sec = cosec <br />A- = <br />Given Required a z <br />$;�(3a; b h A, B ,c tan A = b =cotB, G = 1/ar + s = a 1 -}-�1 <br />C <br />Ts< ti <br />Pock- <br />A, <br />tea a, c ' A, B, b sin A - = cos B, b = � (c-�a) (�-a) mm e <br />• f . <br />. 12i1 A, a B, b G B=90°-A, b- acc c= <br />9 a sin A. - <br />b <br />S 1cs�r ! A, b B, a, ' e. B = 90°-A, a = b tan A, e = i <br />X00 cos A. <br />2 Gs`a 487. o $ ?' t A, c B, z,'b B = 90°-A, a = c.sin A, b = e cos A., <br />Solution of Oblique Triangles <br />Given Required <br />�oct.p asin B asin C <br />9.P 7. o •�B, B,-a b, c,. C b sin A , C =` 180°-(A } T3}, c - sin A <br />-7 ��.c 7 <br />b sin.A , a sin C <br />Jf�i,ur r; .Bcb d, a, b B, e, C sin B = a , C = 180 -(A -f' B), e - kin A <br />9 E3`t: a2 i 4 (a-b) `(A+B) <br />q b, C A, B, G A+B=180°- C, tan j (A-B)- a + b <br />Y i a sin C <br />COL <br />cv ti 1 <br />I G — <br />� � sin A <br />N � <br />b,. C A, B, C' s=a+2+GYY <br />in <br />. <br />- -. <br />kin iB=',1 a G ,Ci=180 —(A'F'B) <br />Gf.- f��4�1!/C3t ,'..ilO�'Tjl: Asa-.. • � Y <br />Alve4-yl G/.c/L. �c�d./ALp/. �,?r•+,o 6"a.i' - a+b+o <br />995—g ! a, b, •o Area s= 2 ,area = s(s-a s- ) (s-c) <br />A, b, c Area b e sin A <br />'/'V_av area = <br />G•fi2�, ..at�,yov.5i.47� 2 <br />�ac6 cam, <br />a2 sin B sin C <br />A, B, C, a Area area = 2 sin A ; <br />RArGP�yca REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />e cosine of th e vertic al angle. Th us: slope distance =319.4 ft.11Pn <br />e a15' y V99brt9. Hor== 51 101i izontal distance 319.4X.9959= 3 8.09 ftIX. cos . 10 — <br />S%o �pgle Horizontal distance also=Slope distance minus slope <br />distance times (1—cosine of vertical angle). With the <br />Ve same figures as in the preceding example, the follow- § <br />Horizontal distance irg result is obtained. Cosine 5° 10'=.9959.1—.9959=.0641. <br />919.4X.6041 1.31, 319.4-1.31= 318.09 ft. <br />1 , - ); When the rise is known, the horizontal distance is approximately;—the slope dist- <br />once less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft, <br />slope distance=302.8 ft. Horizontal distance=3026— 14X 14 =3M6-0.32=30228 ft. <br />2 X 902.5 <br />MADE In U. 5. A. ,!� <br />