Laserfiche WebLink
/ � 1 <br />+' TA13LE'V — Middle` Ordinate; -for Rails' i i <br />1)D <br />of <br />Curve <br />' 'r L1;i\OT OF'R�1'L� ` •. <br />, <br />- -- <br />r <br />Deg <br />of <br />Cane <br />. 'q LENGTH'OF <br />- LENGTH OF RAILS <br />- - - <br />92 80J !28-- 26 24 22 '20 <br />82 <br />FO` <br />�, <br />i <br />�4II <br />22 <br />120 <br />a <br />AV <br />*022 <br />'02Q <br />017 <br />01, <br />013 <br />011 <br />009 <br />*116° <br />456 <br />313 <br />'279 <br />236 <br />200 <br />170 <br />139 <br />2 <br />045 <br />.03 <br />0641 <br />030 <br />025 <br />021 <br />017 <br />17 <br />378 <br />333 <br />290' <br />202 <br />219 <br />'180 <br />148 <br />3 <br />03,4 <br />Q09 <br />031 <br />044 <br />038 <br />032 <br />026 <br />+18 <br />400 <br />Sal <br />306 <br />26a <br />225 <br />'190 <br />156 <br />4 <br />1, <br />@Be <br />'a <br />068 <br />059 <br />050 <br />042 <br />095 <br />'044 <br />19 <br />1423 <br />144o <br />3,1 <br />324 <br />280 <br />238 <br />201 <br />165 <br />5 <br />8 ' <br />112 <br />134 <br />098 <br />11 <br />086 <br />0' <br />Oat <br />063 <br />070 <br />051[ <br />'08S <br />052 <br />1 20 <br />21 <br />466 <br />392 <br />410 <br />1341 <br />35, <br />296 <br />309 <br />250 <br />262 <br />212 <br />222 <br />174 <br />182 <br />I7 r <br />l,r <br />147 <br />1 0' <br />103 <br />089 <br />074 <br />061 <br />`1 22 <br />`48, <br />430 <br />375 <br />32o <br />275 <br />233 <br />101 <br />r 8� <br />179 <br />15, <br />71 <br />119 <br />100 <br />084 <br />'070 <br />'21 <br />' 009 <br />40' <br />390 <br />338 <br />287 <br />243 <br />199 <br />9 <br />201 <br />l i7 <br />1 , <br />133 <br />113' <br />"095 <br />'o,8 <br />' 24 <br />a31 <br />4691 <br />1408 <br />354 <br />299 <br />253 <br />208 <br />10a' <br />-231 <br />196` <br />1-11 <br />147 <br />126' <br />-106 <br />1087 <br />l25 <br />1,a2 <br />466 <br />424 <br />367 <br />311 <br />263 <br />216 <br />lilt <br />245, <br />21; <br />188 <br />162 <br />133 <br />116 <br />090 <br />26 <br />bi3 <br />506 <br />441 <br />382 <br />323 <br />'274 <br />225 <br />12 <br />268, <br />235 <br />20l <br />177 <br />151 <br />'127 <br />105 <br />-27 <br />594 <br />524 <br />`457 <br />396 <br />333 <br />1284 <br />233 <br />1 i f <br />290 <br />2a4 <br />222 <br />192 <br />1f,4 <br />' 138 <br />113 <br />--28 <br />'619 <br />540 <br />14% <br />411 <br />348 <br />294 <br />242 <br />)14 <br />312; <br />2,0 <br />'30' <br />207 <br />17o <br />148 <br />122 <br />-29 <br />643 <br />564' <br />491 <br />424 <br />361 <br />303 <br />200- <br />15 <br />434 <br />'290 <br />207,k223 <br />188 <br />159 <br />131 <br />30 <br />'660 <br />583 <br />608 <br />438 <br />374 <br />313 <br />2a9 <br />TI i <br />CURVE � FOR11ULrE It .1 <br />T=12 tan I I - a[ , 1,t' <br />.R=T cot ii Chord def—ehord2 Z <br />;,Tf 50!tln'4giI' c i�—, r� ! _ N ,. _ i <br />, <br />t <br />bin, 1) ,` - 'R=` ^'50 I di^^s �'is , It <br />CSin - l ll = 0' i e t,�; t' ' �a nl D- - r2 t,No , chords = $ I ; <br />hu 1 , a + ,D <br />'D, )0 tin � ,l �E , R es�sec iIl- <br />Sin U, -,- , ; " 1 <br />t - i, r ^ T E`= T t"n, r `IT Tan 2def'—, y chord defy <br />"The square bflany distance, divided by'twice thekradlns, will equal the <br />distance fromntangent oto curie„ very; ncai ll s: fG ' , t; _ t b „ , :, <br />Table'I1'l contains Tangents and Exteii141s to a 49cnrve 1 Tan 'and Ext " 1 <br />to"anj, other radius may be-found,,nearly enough; by"dmding the Tan or <br />Ext 0uposito7tbegii eu centr'al -angle by the ure e <br />given degree lof c' <br />To find 'De',, of Curve;' havmg7the'Centfal. Angle andiTangent Divide <br />Tan opposite the riven Central Aug1(,-by4 the-glien Tangent ; <br />To find Deg of Cuive? having1the`Cential Angle'and'F,,ternal Divide <br />Est opposite the given Central Augle,by the gmeu{Evteludl- i <br />To find Nat Tau and' Nat Ev -See i for in) angle b} Table IV Tan ` <br />or Ext of tivice the, given dnglc divided by'tlle radius -of a 102curve will be r <br />the, Nat` Tau or Nat Ex 'Sec 1 r , ! t''b26 t f C <br />`l'u find angle (foi a given distance audcdeflectiou'n <br />Rule 1' Alultlply the given distance by to1745 (def for 10 for 1' ft), and <br />divide gri cu deflection by the product a' P r,, I i 1 <br />Rule 2 Multiply givcuTdeflection by, 57 3, and divide the, product by, <br />the giienidistance <br />To find,d'efie'cfton for a gneu angle and distance--llultlply the angle <br />by ' 01745, and tho'product by,the" diisCdnce <br />Ri6HT ANGLE Tx1ANGLFo Square the' altitude, divide b).tvvlce the base <br />Add quotient to base for liyf)othcnuserl ; r ' I <br />Given, Base 100, Alt 10 - 102 -_200= 3,:r 100-}- 5=100 5 hyp ; <br />' Given Hyp 100, Alt 25 r 259 200=0' 125 100-3 125=96 875=Base l <br />ii , E1ioi in first"eaample,y 001., 1n last, ,1045 <br />To find Tons of Rail in one mile of track inultiply height per yard <br />by 11, and divide by 7 <br />WGCa <br />J0�CU <br />(! <br />�, <br />