TABLE V ' Middle Ordinates for Rails
<br />Deg
<br />of—
<br />�I1L9
<br />LENGTH 07 RAILS
<br />Dog
<br />of
<br />Cnrvo
<br />j L7;V[,T1I OP RAILS
<br />-
<br />32
<br />30
<br />�9 281
<br />l24f
<br />22
<br />s20 a
<br />321
<br />30
<br />29
<br />'6
<br />24
<br />' 22
<br />20
<br />t n
<br />%ry
<br />10
<br />022
<br />020
<br />017,-015
<br />013
<br />"011
<br />00fl
<br />18°
<br />iofl
<br />313
<br />273
<br />290
<br />200
<br />'110
<br />139
<br />�3 ,
<br />040,
<br />090
<br />034
<br />030
<br />`014
<br />(Y25
<br />021
<br />1017
<br />17
<br />3,6
<br />933
<br />290
<br />252
<br />213
<br />'ISO
<br />148
<br />3
<br />01,E
<br />0,9
<br />05t
<br />O.
<br />-032
<br />026
<br />18
<br />400
<br />1, 1,
<br />306
<br />260
<br />225
<br />190
<br />136
<br />4
<br />091
<br />0-0
<br />Ob8
<br />059
<br />0o0
<br />042
<br />035
<br />19
<br />423
<br />371
<br />324
<br />250
<br />293
<br />201
<br />lbs
<br />5t
<br />11?,
<br />098
<br />OBo
<br />074
<br />009
<br />'Oa4
<br />044
<br />10
<br />44D
<br />392
<br />941
<br />296
<br />250
<br />2t2
<br />174
<br />B
<br />]3k
<br />118"
<br />103
<br />098
<br />075
<br />063
<br />Oa'
<br />21
<br />1466
<br />410
<br />307
<br />309
<br />203
<br />322
<br />182
<br />7
<br />1X
<br />1H
<br />120
<br />103
<br />058
<br />074
<br />061
<br />22
<br />497
<br />43U
<br />13-5
<br />32,,
<br />2-a
<br />'233
<br />191
<br />9
<br />1 9l
<br />157
<br />137
<br />113
<br />10010S
<br />070
<br />23
<br />509
<br />450
<br />390
<br />339
<br />2S7
<br />243
<br />199
<br />),9
<br />'20t
<br />1,7
<br />1041
<br />193
<br />113
<br />09
<br />0781
<br />.r 24
<br />531
<br />40
<br />'403
<br />304
<br />190
<br />204
<br />209
<br />10.
<br />2'3i
<br />190
<br />1711-147
<br />126
<br />'IOD
<br />kOS7
<br />_'25
<br />u02
<br />480
<br />424
<br />367
<br />411
<br />283
<br />216
<br />11
<br />245
<br />218
<br />188
<br />162
<br />138
<br />116
<br />1098
<br />do
<br />573
<br />a06
<br />441
<br />933
<br />321
<br />274
<br />"a
<br />�7 V
<br />_'68'
<br />235
<br />205
<br />17,
<br />151'
<br />12,
<br />1100
<br />-27
<br />594
<br />Z) 24
<br />457
<br />396
<br />433
<br />294
<br />233
<br />33
<br />14
<br />r1?7fl
<br />•104
<br />222t
<br />19?
<br />10.3„113
<br />113
<br />28
<br />}Bi8
<br />54E
<br />470
<br />4�1�1
<br />348
<br />294
<br />2t2
<br />15
<br />3131
<br />334'
<br />3 v
<br />29D
<br />239
<br />2D7�
<br />207
<br />223
<br />17D
<br />188
<br />148
<br />' 109
<br />123
<br />1131
<br />29
<br />'30
<br />638
<br />'BOO
<br />554
<br />a93
<br />491
<br />508
<br />42+
<br />438
<br />361
<br />'374
<br />30d
<br />313
<br />2D0
<br />lag
<br />_( aURVE FOliMUL E
<br />T= R tan I l - R= T 'cot 1 Chord def =chard 2
<br />7-50 tan "J'D t 1 0 _
<br />R„= 5D 1, r B.
<br />� 4 i t
<br />'Sul D = 50 t- , a' , Sm' D �'0 1 chords = I
<br />_
<br />'ex ,sec I`f' ` D
<br />Sin V== 50 tan �� I 1'r 1 ,' 1 '
<br />1 '
<br />E = T tan '
<br />T , -r 1I Tan ,def = T chord def
<br />a 1 1 4 3
<br />p� The'square of lanv diAanco; dlvlded by'tivlce ,the1 radius, will equal the
<br />distance from tangent to -curve, -very nearly ' 1
<br />7'I'abletIV contatns Tangents and Externals to 'a 4° curl e , Tan land Eat
<br />to nnj otliei rndmssrnay;be found, nearly enough; b3 fdnlding'the Tan or
<br />fit",,i1posite-the given central angle by the'given degree'ot curve'
<br />e To find 1Deg of Curve;' having the Central Angles and Tangent) Divide
<br />Tau opposltel010 given Central AngIe, by the;-gitien+Tangent - n,
<br />To find Deg of Curve,'i having tthe. Central Anglel and Liteinal 1Divi3e
<br />µ Eat opposite the given Central Angle' byltlie giventEateinal ' -
<br />i To find ;Ntit Tan and', Nat Es Sec 'for any angle by Table IV' ,.Tan
<br />or Ext, of telco the2glven angle divided by the radiust�of a1° curve will be
<br />the Nat' Tau or Nat oEr Sec i
<br />` r '-To find -angle for a gnenldistance acid tdeflection-�f i t
<br />` Rule 1 Multiply the t givenldlstance-bp '01743'(def�for le for 1 ft ), and
<br />' divide, given deilectza❑ by the product` "g- I
<br />t r tlPule 2Multiply given'defleetton lby 57 3, and divide the -product by
<br />the rgiven ;distance �I¢C L 1 1Cr� 1 t t, a I
<br />I -To find�Ideftection for a given angle andt distant 1.'Multiply the'angle
<br />4 byi 01745; and the prodnet by thoudistance'
<br />d t-P1GHT 9aGLE TRIAYGLEs „Square the' altitude; dnlde by Imce the' base
<br />Add 2uottent_to base for hypothenuse-i1 1 9 " a, , i ' t
<br />GiiennBase l00,LAlt. 10, 102 r---2001= 5. 100+ 5 '=100 5 hyp r
<br />G4venHyp'100;A1t 2a t3252---200.�3'125 100-3' 123=96°875=Baso
<br />`Error in fir`at`exampl`e,, 002, 1n lBst, x,'045 i
<br />To find -Tons of Rail an`-oae'tulle'ofl track multiply weight per yard
<br />bF 11 and dilide by 7 -1
<br />z, A
<br />IV,
<br />1 t�1q.4�7 cL �-
<br />8 t
<br />j
<br />Y -z ~
<br />Q
<br />`a
<br />t n
<br />%ry
<br />z, A
<br />IV,
<br />1 t�1q.4�7 cL �-
<br />8 t
<br />
|