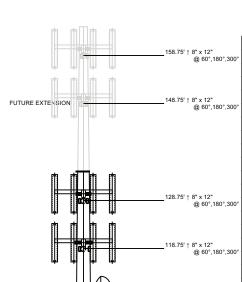


Structural Design Report

135' Extendible to 165' Monopole Site: Jenna Dr, WI Site Number: WI-00-1477

Prepared for: CENTRAL STATES TOWER by: Sabre Towers & Poles TM


Job Number: 162371

May 1, 2017

Monopole Profile	1
Foundation Design Summary	2
Pole Calculations	3-14
Foundation Calculations	15-16

Length (ft)	53'-3"	/	53'-6"	40'-0"	30,-0"
Number Of Sides			18		
Thickness (in)	3/8"		5/16"	"4/1	
Lap Splice (ft)		7' - 3"		2, - 6"	
Top Diameter (in)	48.88"		36.56"	27.4"	19"
Bottom Diameter (in)	63.8"		51.54"	38.6"	27.4"
Taper (in/ft)			0.28		
Grade			A572-65		
Weight (lbs)	14565		8381	4257	2452
Overall Steel Height (ft)			134		30 (Extension)

108' ↑ 8" x 12" @ 60°

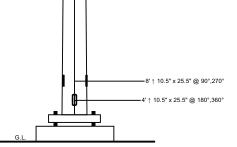
Designed Appurtenance Loading

	Elev	Description	Tx-Line
o°	160***	Commscope Tri-Sector Platform Mount - MTC3607	
	160***	(12) 8' X 1' X 6IN	(13) 1 5/8"
	160***	(6) 17" x 12" x 6" TMA	
	160***	(12) 24" x 12" x 10" RRH	
)°	160***	(3) DC6-48-60-18-8F	
	150***	Commscope Tri-Sector Platform Mount - MTC3607	
	150***	(12) 8' X 1' X 6IN	(13) 1 5/8"
	150***	(6) 17" x 12" x 6" TMA	
	150***	(3) DC6-48-60-18-8F	
	150***	(12) 24" x 12" x 10" RRH	
	130	SitePro1 Cage Platform	
)°	130	(6) CBC78-DF-8-DCB	
	130	(18) RRUS 12	
	130	(3) DC6-48-60-18-8F	
١.	130	(12) 8' X 1' X 6IN	(13) 1 5/8"
)° '	130	(6) RRUS A2 Module	
	130	(6) TTMAV-700C	
	120	Commscope Tri-Sector Platform Mount - MTC3607	
	120	(12) 8' X 1' X 6IN	(13) 1 5/8"
	120	(6) 17" x 12" x 6" TMA	
	120	(3) DC6-48-60-18-8F	
	120	(12) 24" x 12" x 10" RRH	
	110	(1) Dish Mount (Monopole Only) - Pipe Mount (up to 6' Dish)	
	110	(1) 6' Solid Dish W/ Radome	(1) EW52

Load Case Reactions

Description	Axial (kips)	Shear (kips)	Moment (ft-k)	Deflection (ft)	Sway (deg)
3s Gusted Wind	64.31	42.37	5247.61	12.03	8.12
3s Gusted Wind 0.9 Dead	48.23	42.33	5146.84	11.71	7.88
3s Gusted Wind&Ice	103.09	9.88	1296.58	3.11	2.1
Service Loads	53.62	10.54	1296.3	3.01	2.01

Base Plate Dimensions


Shape	Diameter	Thickness	Bolt Circle	Bolt Qty	Bolt Diameter
Round	76.5"	2"	70.75"	16	2.25"

Anchor Bolt Dimensions

Length	Diameter	Hole Diameter	Weight	Туре	Finish
84"	2.25"	2.625"	1937.6	A615-75	Galv

Notes

- 1) Antenna Feed Lines Run Inside Pole
- 2) All dimensions are above ground level, unless otherwise specified.
- 3) Weights shown are estimates. Final weights may vary.
- 4) The Monopole was designed for a basic wind speed of 90 mph with 0" of radial ice, and 40 mph with 3/4" of radial ice, in accordance with ANSI/TIA-222-G, Structure Class II, Exposure Category C, Topographic Category 1.
- 5) Full Height Step Bolts
- 6) Tower Rating: 99.6%
- *** These Appurtenances cannot be installed until the Monopole has been extended.

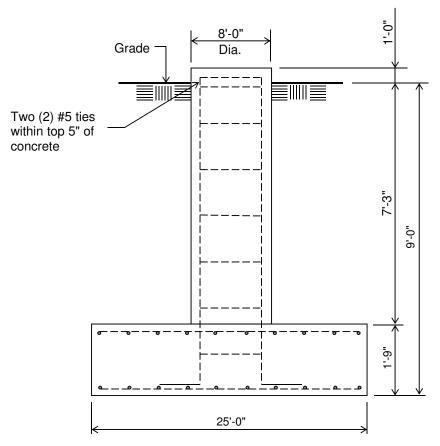
Sabre Industries

Towers and Poles

Sabre Communications Corporation 7101 Southbridge Drive P.O. Box 658 Sioux City, IA 51102-0658 Phone: (712) 258-6690 Fax: (712) 279-0814

Information contained herein is the sole property of Sabre Communications Corporation, constitutes a trade secret as defined by lows Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior witten consent of Sabre Communications Corporation.

Job:	162371	
Customer:	CENTRAL STATES TOW	/ER
Site Name:	Jenna Dr, WI WI-00-1477	7
Description:	135' ext. 165' Monopole	
Date:	5/1/2017	By: JLG



No.: 162371

Date: 5/1/17 By: TTW

<u>Customer: CENTRAL STATES TOWER</u> <u>Site: Jenna Dr, WI WI-00-1477</u>

135' Extendible to 165' Monopole at 90 mph Wind with no ice and 40 mph Wind with 0.75 in. Ice per ANSI/TIA-222-G. Antenna Loading per Page 1

ELEVATION VIEW

(55.87 Cu. Yds.) (1 REQUIRED; NOT TO SCALE)

Notes:

- 1). Concrete shall have a minimum 28-day compressive strength of 4500 PSI, in accordance with ACI 318-11.
- 2). Rebar to conform to ASTM specification A615 Grade 60.
- 3). All rebar to have a minimum of 3" concrete cover.
- 4). All exposed concrete corners to be chamfered 3/4".
- 5). The foundation design is based on the geotechnical report by Edge Consulting, Project No. 15154, dated April 20, 2017.
- 6). See the geotechnical report for compaction requirements, if specified.
- 7). The foundation is based on the following factored loads:
 Moment (kip-ft) = 5247.61
 Axial (kips) = 64.31
 Shear (kips) = 42.37

	Rebar Schedule per Pad and Pier
	(48) #8 vertical rebar w/ hooks at bottom w/
Pier	#5 ties, two within top 5" of top of pier then
	12" C/C
Pad	(39) #8 horizontal rebar evenly spaced each
гаи	way top and bottom (156 total)

8). 7.25 ft of soil cover is required over the entire area of the foundation slab.

Information contained herein is the sole property of Sabre Towers & Poles, constitutes a trade secret as defined by Iowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Towers & Poles.

162371 - Extension.txt

(USA 222-G) - Monopole Spatial Analysis (c)2015 Guymast Inc. Tel:(416)736-7453 Fax: (416)736-4372 Web:www.guymast.com

Processed under license at:

on: 27 apr 2017 at: 10:49:14 Sabre Towers and Poles ______

135' ext. 165' Monopole / Jenna Dr, WI

 $\mbox{\ensuremath{^{*}}}$ All pole diameters shown on the following pages are across corners. See profile drawing for widths across flats.

POLE GEOMETRY

ELEV ft	SECTION NAME	No. SIDE	OUTSIDE DIAM in	-NESS	RESISTANCES **Pn **Mn kip ft-kip	OVERLAP LENGTH RAT ft	, -
164.0							
	Α	18	19.29	0.250	1105.4 424.1		11.6
134.0			27.82	0.250	1565.5 873.1		
134.0			27.82	0.250	1565.5 873.1		
00.5	В	18	37.62	0.250	1911.7 1448.6		17.6
99.5			37.62	0.250	1911.7 1448.6		
94.0	B/C	18	38.70	0.312	2637.8 2049.9	5.50	1.73
94.0			38.70	0.312	2637.8 2049.9		
F2 2	С	18		0.312	3101.0 3142.1		19.7
55.2				0.312	3101.0 3142.1		
46.0	C/D	18	51.71	0.375	4078.0 4242.0	7.25	1.71
46.0			51.71	0.375	4078.0 4242.0		
	D	18	64 78	0 375	4632.8 6054.9		22.2
0.0							
POLE AS	SSEMBLY						

==========

SECTION NAME	BASE ELEV	NUMBER	BOLTS	AT BASE DIAM	OF SECTION STRENGTH	THREADS IN SHEAR PLANE	CALC BASE ELEV
	ft			in	ksi	SHEAR PLANE	ft
A B C D	134.000 94.000 46.000 0.000	0 0 0 0	A325 A325 A325 A325	0.00 0.00 0.00 0.00	92.0 92.0 92.0 92.0	0 0 0 0	134.000 94.000 46.000 0.000

POLE SECTIONS

SECTION NAME	No.of SIDES	LENGTH C	OUTSIDE.DI BOT *	TAMETER TOP *	THICK- NESS in	MAT- ERIAL ID	FLANG BOT	GE.ID TOP	FLANGE GROUF BOT	
A B	18 18	30.00 40.00	27.82 39.20	19.29 27.82	0.250 0.250	1 2	0	0	0	0
C D	18 18	53.50 53.25	52.34 64.78	37.12 49.64	0.312 0.375	3 4	0	0	0	0

^{* -} Diameter of circumscribed circle

MATERIAL TYPES

TYPE OF TYPE NO OF ORIENT HEIGHT WIDTH .THICKNESS. IRREGULARITY Page 1

		162371 - Extension.						on.txt	txt			
SHAPE	NO	ELEM.		WEB	WEB	FLANGE .PRO % OI AREA		ECTION. ORIENT				
			&	deg	in	in	in	in		deg		
PL	1	1		0.0	27.82	0.25	0.250	0.250	0.00	0.0		
PL	2	1		0.0	39.20	0.25	0.250	0.250	0.00	0.0		
PL	3	1		0.0	52.34	0.31	0.312	0.312	0.00	0.0		
PL	4	1		0.0	64.78	0.38	0.375	0.375	0.00	0.0		

& - With respect to vertical

MATERIAL PROPERTIES

MATERIAL	ELASTIC	UNIT	ST	RENGTH	THERMAL
TYPE NO.	MODUĻUS	WEIGHT	, Fụ	, F <u>y</u>	COEFFICIENT
	ksi	pcf	ksi	ksi	/deg
1	29000.0	490.0	80.0	65.0	0.00001170
2	29000.0	490.0	80.0	65.0	0.00001170
3	29000.0	490.0	80.0	65.0	0.00001170
4	29000.0	490.0	80.0	65.0	0.00001170

LOADING CONDITION A

90 mph wind with no ice. Wind Azimuth: 0♦

LOADS ON POLE

LOAD TYPE	ELEV ft	APPLYLO RADIUS ft	ADAT AZI	LOAD AZI	FORC HORIZ kip	DOWN kip	MOM VERTICAL ft-kip	ENTS TORSNAL ft-kip
00000000	159.000 159.000 149.000 149.000 129.000 129.000 119.000 109.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0000 6.5872 0.0000 6.4983 0.0000 7.4113 0.0000 6.2001 0.0000	2.5796 5.5260 2.4174 5.5260 2.0929 7.9891 1.9307 5.5260 0.0772	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	164.000 122.500 122.500 111.000 99.500 99.500 94.000 80.417 80.417 66.833 53.250 53.250 46.000 46.000 34.500 23.000 23.000 11.500 0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	180.0 180.0		0.0542 0.0748 0.0805 0.0805 0.0867 0.0967 0.0999 0.0940 0.0994 0.1036 0.1036 0.1057 0.1057 0.1052 0.1052 0.1042 0.0995 0.0995 0.1008	0.0650 0.0943 0.1036 0.1036 0.1140 0.2718 0.2718 0.1609 0.1609 0.1762 0.1915 0.1915 0.4441 0.2536 0.2536 0.2536 0.2691 0.2691 0.2847 0.2847 0.3002 0.3002	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ANTENNA LOADING

^{*} Only 3 condition(s) shown in full
* RRUs/TMAs were assumed to be behind antennas

^{*} Some concentrated wind loads may have been derived from full-scale wind tunnel testing

162371 - Extension.txt

ANTENNA ATTACHME			HMENT		ANTENNA FORCES			
TYPE	ELEV ft			AZI	AXIAL kip		GRAVITY kip	
STD+R	109.0	0.0	2.1	0.0	1.09	0.00	0.24	0.00

90 mph wind with no ice. Wind Azimuth: 0♦

LOADS ON POLE

LOAD TYPE	ELEV ft	APPLYLO RADIUS ft	AZI	LOAD AZI	FOR HORIZ kip	CES DOWN kip	MOME VERTICAL ft-kip	ENTS TORSNAL ft-kip
C C C C C C C C C	159.000 159.000 149.000 149.000 129.000 119.000 119.000 109.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0000 6.5872 0.0000 6.4983 0.0000 7.4113 0.0000 6.2001 0.0000	1.9347 4.1445 1.8130 4.1445 1.5697 5.9918 1.4480 4.1445 0.0579	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D D D D D D D D D D D D D D D D D D D	164.000 99.500 99.500 94.000 94.000 80.417 80.417 66.833 53.250 46.000 46.000 34.500 23.000 23.000 11.500 0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0544 0.0882 0.0909 0.0909 0.0944 0.0994 0.1036 0.1036 0.1057 0.1057 0.1052 0.1042 0.1042 0.1042 0.1042 0.1048 0.1008	0.0487 0.0864 0.2038 0.2038 0.1207 0.1321 0.1321 0.1436 0.3331 0.3331 0.1902 0.2019 0.2019 0.2019 0.2135 0.2252	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	NA LOADING							
TYPE	ANTENNA. ELEV ft	AZI	ATTACHMI RAD / ft	ENT AZI	AXIAL kip			ORSION ft-kip
STD+R	109.0	0.0	2.1	0.0	1.09	0.00	0.18	0.00

40 mph wind with 0.75 ice. Wind Azimuth: 0♦

LOADS ON POLE

LOAD TYPE	ELEV ft	APPLYLOA RADIUS ft	DAT AZI	LOAD AZI	FORG HORIZ kip	CES DOWN kip	MOMI VERTICAL ft-kip	ENTS TORSNAL ft-kip
C C C C C C	159.000 159.000 149.000 149.000 129.000 129.000 119.000	0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0000 1.4883 0.0000 1.4644 0.0000 1.7874 0.0000	2.5796 11.2083 2.4174 11.1718 2.0929 15.5772 1.9307	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Page 3

C C	119.000 109.000	0.00	0.0	0.0	162371 - 1.3850 0.0000	Extension.t 11.0472 0.0772	0.0000 0.0000	0.0000 0.0000
	164.000 156.500 156.500 149.000 149.000 141.500 141.500 134.000 134.000 122.500 111.000 199.500 99.500 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 95.000 96.833 96	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	180.0 180.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0143 0.0143 0.0154 0.0155 0.0165 0.0175 0.0175 0.0188 0.0203 0.0203 0.0216 0.0225 0.0225 0.0232 0.0243 0.0243 0.0252 0.0252 0.0252 0.0255 0.0255 0.0255 0.0255 0.0256	0.1118 0.1118 0.1228 0.1228 0.1338 0.1338 0.1447 0.1447 0.1588 0.1753 0.1753 0.1916 0.3537 0.3537 0.2463 0.2463 0.2679 0.2679 0.2688 0.2888 0.5452 0.5452 0.5452 0.3567 0.3909 0.4010 0.4010	0.0000 0.0000	0.0000 0.0000
	A LOADING							
TYPE	.ANTENNA ELEV ft	AZI	ATTACHN RAD ft	MENT AZI	AXIAL kip	ANTENNA F SHEAR GR kip	AVITY TO	DRSION Et-kip
STD+R	109.0	0.0	2.1	0.0	0.15	0.00	0.78	0.00

(USA 222-G) - Monopole Spatial Analysis

(c)2015 Guymast Inc.

Tel:(416)736-7453

Fax: (416)736-4372

Web:www.guymast.com

Processed under license at:

Sabre Towers and Poles

on: 27 apr 2017 at: 10:49:14 ______

135' ext. 165' Monopole / Jenna Dr, WI

MAXIMUM POLE DEFORMATIONS CALCULATED(w.r.t. wind direction)

MAST ELEV ft	DEFLECTIO HORIZONTAL ALONG			ROTATIC TILT ALONG		
164.0	12.03A	-0.03J	1.25L	8.12A	-0.023	-0.011
156.5	10.99A	-0.03j	1.10L	8.11A	-0.02j	-0.01I
149.0	9.96A	-0.03J	0.95L	8.01A	-0.023	-0.01I
141.5	8.94A	-0.033	0.81L	7.79A	-0.02j	-0.01I
134.0	7.96A	-0.02J	0.68L	7.48A	-0.023	-0.01I
122.5	6.54A	-0.02j	0.50L	6.88A	-0.02j	-0.01I
111.0	5.25A	-0.02J	0.36L	6.13A	-0.023	-0.01J
99.5	4.11A	-0.013	0.24L	5.28A	-0.01	-0.01j
94.0	3.63A	-0.013	0.20L	4.93A	-0.013	0.00j
80.4	2.57A	-0.01J	0.12L	4.05A	-0.01j	0.000

Page 4

162371 - Extension.txt

66.8	1.71A	-0.01J	0.06L	3.19A	-0.01J	0.003
53.2	1.06A	0.00j	0.03L	2.37A	-0.01j	0.000
46.0	0.78A	0.00j	0.02L	2.02A	-0.01J	0.00j
34.5	0.43A	0.003	0.01L	1.47A	-0.01j	0.00σ
23.0	0.19A	0.00j	0.00L	0.95A	0.00j	0.003
11.5	0.05A	0.00j	0.00AE	0.46A	0.00j	0.005
0.0	0.00A	0.00A	0.00A	0.00A	0.00A	0.00A

MAXIMUM ANTENNA AND REFLECTOR ROTATIONS

ELEV ANT ANT BEAM DEFLECTIONS (deg) ft deg

109.0 0.0 STD+R 5.921 D 0.272 K 5.981 A 5.981 A

${\tt MAXIMUM\ POLE\ FORCES\ CALCULATED} (w.r.t.\ to\ wind\ direction)$

MAST ELEV ft	TOTAL AXIAL kip	SHEAR.w.r. ALONG kip	t.WIND.DIR ACROSS kip	MOMENT.w.r. ALONG ft-kip	ACROSS	TORSION ft-kip
164.0	 -0.01 к	0.01 в	0.00 к	-0.03 E	-0.02 к	0.00 к
156.5	14.63 Y 14.63 AC	7.01 R 7.03 G	0.00 K -0.01 W	-20.76 в -20.75 в	0.03 K 0.4 E	-0.01 0 -0.01 E
149.0	15.55 AC 29.14 AC	7.48 V 13.98 A	-0.01 W	-83.18 G -83.15 G	0.11 W 	-0.02 o -0.02 o
141.5	30.14 AC 30.15 AC	14.45 A 14.46 U	0.01 N 0.02 N	-205.24 A	0.14 F 	-0.05 D
134.0	31.23 AC 31.23 AC	14.96 U 14.96 K	0.02 N 	-331.17 A	0.24 K 	-0.08 D
122.5	50.73 AC	23.21 M	0.02 W	-587.16 A	0.40 т	-0.08 D 0.16 K
111.0	50.73 AC 65.72 AC	23.22 W 30.32 W	0.03 U 0.03 U	-587.16 A -949.76 A	0.42 T -0.68 U	0.16 к 0.25 к
99.5	65.72 AC 68.78 AC	30.32 U 32.39 M	-0.03 X -0.17 V	-949.75 A -1354.10 A	-0.69 U -1.69 AG	0.25 K -2.16 I
94.0	68.78 AC 70.72 AC	32.39 A 32.89 A		-1353.99 A -1551.76 A	-1.71 AG 2.48 V	-2.16 I -2.18 I
	70.72 AC 74.07 AC	32.85 A 34.12 A		-1551.76 A -2048.48 A	2.48 V 4.87 J	-2.18 I -2.17 J
80.4	74.07 AC 77.70 AC	34.16 A 35.50 A		-2048.49 A -2557.70 A	4.87 J 7.27 J	-2.17 J
66.8	77.70 AC 81.63 AC	35.50 A 36.91 A		-2557.71 A -3079.17 A	7.27 J 9.65 J	-2.22 J
53.2	81.63 AC 85.58 AC	36.92 A 37.68 A		-3079.17 A	9.65 J	-2.25 J
	03.30 AC	37.00 A	0.13 W	Page 5	10.51 3	2.20 3

46.0			162371 - Extens	sion.txt	
40.0	85.58 AC	37.67 A	-0.17 W -3362.99 A	10.91 J	-2.26 J
34.5	89.75 AC	38.88 A	-0.17 W -3821.19 A	12.91 J	-2.27 J
34.3	89.75 AC	38.88 A	-0.18 W -3821.20 A	12.91 〕	-2.27 J
23.0	94.04 AC	40.07 A	-0.18 W -4288.50 A	14.89 J	-2.28 J
23.0	94.04 AC	40.07 A	-0.17 W -4288.51 A	14.89 J	-2.28 J
11.5	98.47 AC	41.22 A	-0.17 W -4764.17 A	16.85 J	-2.28 J
11.3	98.47 AC	41.21 A	-0.17 W -4764.17 A	16.85 J	-2.28 J
	103.09 AC	42.37 A	-0.17 W -5247.61 A	18.80 J	-2.28 J
base reaction	103.09 AC	-42.37 A	0.17 w 5247.61 A	-18.80 J	2.28 J

COMPLIANCE WITH 4.8.2 & 4.5.4

ELEV	AXIAL	BENDING	SHEAR + TORSIONAL	TOTAL	SATISFIED	D/t(w/t)	MAX ALLOWED
ft			101131011/12				ALLOWED
164.00	0.00к	0.00E	0.00в	0.00E	YES	11.64A	45.2
156 50	0.01Y	0.04B	0.01R	0.05в	YES	13.12A	45.2
156.50	0.01AC	0.04в	0.01G	0.05в	YES	13.12A	45.2
140.00	0.01AC	0.13G	0.01V	0.14G	YES	14.60A	45.2
149.00	0.02AC	0.13G	0.02A	0.14F	YES	14.60A	45.2
141 50	0.02AC	0.27A	0.02A	0.28A	YES	16.08A	45.2
141.50	0.02AC	0.27A	0.020	0.28A	YES	16.08A	45.2
124.00	0.02AC	0.38A	0.02U	0.39A	YES	17.56A	45.2
134.00	0.02AC	0.38A	0.02к	0.39A	YES	17.56A	45.2
122 50	0.03AC	0.56A	0.03M	0.57A	YES	19.83A	45.2
122.50	0.03AC	0.56A	0.03w	0.57A	YES	19.83A	45.2
111 00	0.04AC	0.76A	0.03W	0.78A	YES	22.11A	45.2
111.00	0.04AC	0.76A	0.030	0.78A	YES	22.11A	45.2
00 50	0.04AC	0.93A	0.03M	0.96A	YES	24.38A	45.2
99.50	0.03AC	0.69A	0.03A	0.71A	YES	19.15A	45.2
04.00	0.03AC	0.74A	0.02A	0.76A	YES	20.02A	45.2
94.00	0.03AC	0.76A	0.02A	0.77A	YES	19.74A	45.2
00 12	0.03AC	0.85A	0.02A	0.87A	YES	21.88A	45.2
80.42	0.03AC	0.85A	0.02A	0.87A	YES	21.88A	45.2
66.03	0.03AC	0.92A	0.02A	0.94A	YES	24.03A	45.2
66.83	0.03AC	0.92A	0.02A	0.94A	YES	24.03A	45.2
F2 2F	0.03AC	0.98A	0.02A	1.00A	YES	26.17A	45.2
53.25	0.02AC	0.76A	0.02A	0.77A	YES	21.52A	45.2
46.00	0.02AC	0.78A	0.02A	0.79A	YES	22.47A	45.2
46.00	0.02AC	0.79A	0.02A	0.81A	YES	22.18A	45.2
24.50	0.02AC	0.82A	0.02A	0.83A	YES	23.69A	45.2
34.50	0.02AC	0.82A	0.02A	0.83A	YES	23.69A	45.2

Page 6

		162371 -	Extension	1.txt	
23.00				1.txt 25.21A	
23.00				25.21A	
11.50				26.72A	
11.50				26.72A	
0.00				28.23A	_
0.00	 	 			

${\tt MAXIMUM\ LOADS\ ONTO\ FOUNDATION} (w.r.t.\ wind\ direction)$

DOWN	SHEAR.w.r.t	.WIND.DIR	MOMENT.w.r.t	.WIND.DIR	TORSION
kip	ALONG kip	ACROSS kip	ALONG ft-kip	ACROSS ft-kip	ft-kip
103.09 AC	42.37 A	-0.17 W	-5247.61 A	18.80 J	-2.28 J

(USA 222-G) - Monopole Spatial Analysis

(c)2015 Guymast Inc.

Tel:(416)736-7453

Fax:(416)736-4372

Web:www.guymast.com

Processed under license at:

Sabre Towers and Poles on: 27 apr 2017 at: 10:49:23

135' ext. 165' Monopole / Jenna Dr, WI

* Some concentrated wind loads may have been derived from full-scale wind tunnel testing

60 mph wind with no ice. Wind Azimuth: 0♦

LOADS ON POLE

LOAD	ELEV	APPLYLO	ADAT	LOAD	FORC	ES	MOM	ENTS
TYPE	c.	RADIUS	AZI	AZI	HORIZ	DOWN	VERTICAL	TORSNAL
	ft	ft			kip	kip	ft-kip	ft-kip
С	159.000	0.00	0.0	0.0	0.0000	2.1497	0.0000	0.0000
C	159.000	0.00	0.0	0.0	1.6388	4.6050	0.0000	0.0000
C	149.000	0.00	0.0	0.0	0.0000	2.0145	0.0000	0.0000
C	149.000	0.00	0.0	0.0	1.6167	4.6050	0.0000	0.0000
C	129.000	0.00	0.0	0.0	0.0000	1.7441	0.0000	0.0000
C	129.000	0.00	0.0	0.0	1.8438	6.6576	0.0000	0.0000
C	119.000	0.00	0.0	0.0	0.0000	1.6089	0.0000	0.0000
C C	119.000 109.000	0.00	$0.0 \\ 0.0$	$0.0 \\ 0.0$	1.5429 0.0000	4.6050 0.0643	0.0000	0.0000
C	109.000	0.00	0.0	0.0	0.0000	0.0043	0.0000	0.0000
D	164.000	0.00	180.0	0.0	0.0135	0.0541	0.0000	0.0000
D	99.500	0.00	180.0	0.0	0.0219	0.0960	0.0000	0.0000
D	99.500	0.00	180.0	0.0	0.0226	0.2265	0.0000	0.0000
D	94.000	0.00	180.0	0.0	0.0226	0.2265	0.0000	0.0000
D	94.000	0.00	180.0	0.0	0.0234	0.1341	0.0000	0.0000
D	80.417	0.00	180.0	0.0	0.0234	0.1341	0.0000	0.0000
D	80.417	0.00	180.0	0.0	0.0247	0.1468	0.0000	0.0000
D	66.833	0.00	180.0	0.0	0.0247	0.1468	0.0000	0.0000
D	66.833	0.00	180.0	0.0	0.0257	0.1596	0.0000	0.0000
D D	53.250 53.250	0.00	$180.0 \\ 180.0$	$0.0 \\ 0.0$	0.0257 0.0263	0.1596 0.3701	0.0000	0.0000
D	33.230	0.00	100.0	0.0	0.0203	0.3701	0.0000	0.0000

Page 7

^{*} Only 1 condition(s) shown in full

^{*} RRUS/TMAs were assumed to be behind antennas

	46.000 46.000 34.500 34.500 23.000 23.000 11.500 0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	180.0 180.0 180.0 180.0 180.0 180.0 180.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	162371 - 0.0263 0.0261 0.0261 0.0259 0.0259 0.0247 0.0251	0.224 0.224 0.237 0.237 0.250	1 0.0000 3 0.0000 3 0.0000 3 0.0000 3 0.0000 2 0.0000 2 0.0000 2 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TYPE	ANTENNA ELEV ft	AZI	ATTACHM RAD ft	1ENT AZI	AXIAL kip	SHEAR	A FORCES GRAVITY TO kip	ORSION
STD+R	109.0	0.0	2.1	0.0	0.27	0.00	0.20	0.00
					r.t. wind			
	H	DEFLECTION ORIZONTAL	ONS (ft)	DO		ROTA	TIONS (deg). ACROSS	TWIST
164.0	3.	01A	0.010	0.0	8A	2.01A	0.00C	0.001
156.5	2.	74A	0.010	0.0	7A	2.01A	0.00c	0.001
149.0					6A		0.00c	0.001
141.5	2.	23A	0.010	0.0	5A	1.93A	0.00C	0.001
134.0	1.	98в	0.010	0.0	5A	1.85A	0.00C	0.001
122.5	1.	 62в	0.000	0.0		1.70A	0.00c	0.00j
111.0	1.	30в	0.000	0.0	2A	1.51A	0.00C	0.003
99.5	1.	02в	0.000	0.0	2A	1.30B	0.00c	0.00j
94.0	0.	90в	0.000		1A			0.003
80.4		 64в		0.0	 1в	1.00B	0.00c	0.00j
66.8	0.	42B	0.000	0.0	1в		0.00C	0.003
53.2	0.	 26в	0.000	0.0	ов	0.59в	0.00c	0.00j
46.0	0.	19в	0.000	0.0	0в	0.50в	0.00C	0.00j
34.5	0.	 11в	0.000	0.0	ов	0.36в	0.00C	0.001
23.0	0.	05в	0.000	0.0	0в	0.23в	0.00C	0.001
11.5	0.	01B	0.000	0.0	0в	0.11B	0.00c	0.001
0.0	0.	00A			0A			0.00A
MAXIMUM	I ANTENNA		ECTOR RC	TATIONS				
ELEV ft	ANT AZI deg	ANT TYPE	ROL		DEFLECTION YAW F		TOTAL	
109.0	0.0	STD+R	-1.466	J 0.	017 C	1.477 A	1.477 A	
					o wind di			
MAST ELEV ft	AXI		EAR.w.r. ALONG kip	t.WIND. ACR	0SS	ENT.w.r.t ALONG ft-kip	.WIND.DIR ACROSS ft-kip	TORSION ft-kip

Page 8

164.0			16	2371 - Extens	ion.txt	
164.0	0.00 I	0.00 A	0.00 I	0.01 A	0.00 I	0.00 I
156 5	7.18 J	1.75 A	0.00 I	-5.13 A	0.00 н	0.00 I
156.5	7.18 G	1.75 н	0.00 c	-5.13 D	0.01 I	0.00 I
140.0	7.64 G	1.86 н	0.00 C	-20.57 н	0.02 C	0.00 C
149.0	14.26 G	3.48 н	0.00 E	-20.57 н	0.02 C	0.00 н
141.5	14.76 G	3.60 н	0.00 E	-50.77 н	-0.05 E	0.00 I
141.5	14.76 н	3.60 н	-0.01 в	-50.78 н	-0.05 E	0.00 I
134.0	15.29 н	3.72 н	-0.01 в	-81.89 н	-0.08 E	0.00 I
134.0	15.29 н	3.73 J	-0.01 в	-81.89 н	-0.08 E	0.00 I
122.5	24.58 н	5.78 J	-0.01 в	-145.10 н	0.17 в	-0.01 I
122.3	24.58 н	5.78 J	-0.01 в	-145.10 н	0.17 в	-0.01 I
111.0	31.77 н	7.55 J	-0.01 B	-234.53 н	0.29 в	-0.01 D
111.0	31.77 н	7.55 н	-0.01 в	-234.53 н	0.29 в	-0.01 D
99.5	33.10 н	8.05 A	-0.04 J	-333.91 н	-0.59 н	-0.55 J
33.3	33.10 н	8.07 в	-0.04 J	-333.88 н	-0.57 н	-0.55 J
94.0	34.34 н	8.19 B	-0.04 J	-382.48 A	-0.67 н	-0.56 J
34.0	34.34 H	8.18 A	0.04 C	-382.48 A	-0.68 н	-0.56 J
80.4	36.16 н	8.49 A	0.04 C	-504.93 A	0.88 J	-0.56 J
00.1	36.16 н	8.50 в	0.05 C	-504.92 A	0.88 J	-0.56 J
66.8	38.16 н	8.83 B	0.05 C	-630.38 A	-1.53 C	-0.57 J
00.0	38.16 н	8.84 B	0.05 C	-630.38 A	-1.53 C	-0.57 J
53.2	40.32 H	9.18 в	0.05 C	-759.09 в	-2.19 C	-0.57 J
3312	40.32 н	9.18 в	0.05 C	-759.07 в	-2.20 C	-0.57 J
46.0	43.01 H	9.37 в	0.05 C	-829.19 в	-2.57 C	-0.57 J
1010	43.01 н	9.37 в	0.05 C	-829.19 в	-2.57 C	-0.57 J
34.5	45.44 H	9.67 в	0.05 C	-942.46 В	-3.20 C	-0.57 J
3.13	45.44 н	9.67 в	0.05 C	-942.46 в	-3.20 C	-0.57 J
23.0	48.02 H	9.97 в	0.05 C	-1058.16 в	-3.83 C	-0.57 I
	48.02 н	9.97 в	0.05 C	-1058.16 в	-3.83 C	-0.57 I
11.5	50.74 н	10.25 в	0.05 C	-1176.16 В	-4.42 C	-0.57 I
	50.74 н	10.25 в	0.05 C	-1176.16 в	-4.41 C	-0.57 I
	53.62 н	10.54 B	0.05 C	-1296.30 в	-5.01 C	-0.57 I
base reaction	53.62 н	-10.54 в	-0.05 C	1296.30 в	5.01 C	0.57 I

COMPLIANCE WITH 4.8.2 & 4.5.4

ELEV	AXIAL		SHEAR + TORSIONAL	TOTAL S	SATISFIED	D/t(w/t)	MAX ALLOWED
ft			101131011111				ALLOWED
164.00	0.001			0.00A			
	0.001	0.004	0.004	0.004	123	11.014	13.2
156.50				0.02A			
130.30				0.02D			

Page 9

	0.01G	0.03н	0.00н	162371 - 0.04н	Extension YES	1.txt 14.60A	45.2
149.00	0.01G	0.03н	0.01H	0.04н	YES	14.60A	45.2
	0.01G	0.07н	0.00н	0.08н	YES	16.08A	45.2
141.50	0.01H	0.07н	0.00н	0.08н	YES	16.08A	45.2
124 00	0.01н	0.09н	0.00н	0.10н	YES	17.56A	45.2
134.00	0.01H	0.09н	0.00j	0.10н	YES	17.56A	45.2
122 50	0.01H	0.14H	0.013	0.15н	YES	19.83A	45.2
122.50	0.01H	0.14н	0.01j	0.15н	YES	19.83A	45.2
111 00	0.02н	0.19н	0.013	0.21H	YES	22.11A	45.2
111.00	0.02н	0.19н	0.01н	0.21н	YES	22.11A	45.2
00 50	0.02н	0.23н	0.01A	0.25н	YES	24.38A	45.2
99.50	0.01H	0.17н	0.01в	0.18н	YES	19.15A	45.2
04.00	0.01H	0.18A	0.01B	0.20A	YES	20.02A	45.2
94.00	0.01H	0.19A	0.01A	0.20A	YES	19.74A	45.2
90 43	0.01H	0.21A	0.01A	0.22A	YES	21.88A	45.2
80.42	0.01H	0.21A	0.01в	0.22A	YES	21.88A	45.2
66 93	0.01H	0.23A	0.01B	0.24A	YES	24.03A	45.2
66.83	0.01H	0.23A	0.01в	0.24A	YES	24.03A	45.2
F2 2F	0.01H	0.24B	0.01B	0.25в	YES	26.17A	45.2
53.25	0.01H	0.19в	0.00в	0.20в	YES	21.52A	45.2
46.00	0.01H	0.19в	0.00в	0.20в	YES	22.47A	45.2
46.00	0.01H	0.20в	0.00в	0.21B	YES	22.18A	45.2
24 50	0.01H	0.20в	0.00в	0.21B	YES	23.69A	45.2
34.50	0.01H	0.20в	0.00в	0.21в	YES	23.69A	45.2
23.00	0.01H	0.21B	0.00в	0.22в	YES	25.21A	45.2
23.00	0.01H	0.21в	0.00в	0.22в	YES	25.21A	45.2
11.50	0.01H	0.21B	0.00в	0.22в	YES	26.72A	45.2
11.30	0.01H	0.21в	0.00в	0.22в	YES	26.72A	45.2
0.00	0.01н	0.21B	0.00в	0.23в	YES	28.23A	45.2
	LOADS ONTO	FOUNDATTON	wrt wi	nd direction	 nn)		
======	=========	========	========	=======	===		

DOWN kip	SHEAR.w.r.t ALONG kip	.WIND.DIR ACROSS kip	MOMENT.w.r.t ALONG ft-kip	.WIND.DIR ACROSS ft-kip	TORSION ft-kip
53.62	10.54	0.05	-1296.30	-5.01	-0.57
H	B	C	B	C	

SO#: 162371

Site Name: Jenna Dr, WI

Date: 5/1/2017

Round Flange Plate and Bolts per ANSI/TIA 222-G Elevation = 134 feet

Pole Data

Diameter: 27.4 in
Thickness: 0.25 in
Yield (Fy): 65 ksi
of Sides: 18 "0" IF Round
Strength (Fu): 80 ksi

Reactions

Moment, Mu: 331.19 ft-kips
Axial, Pu: 18.33 kips
Shear, Vu: 14.96 kips

Bolt Data

Flange Bolt Results

Quantity:	10		Allowable Φ*Rnt:	54.54 kips
Diameter:	1	in	Adjusted Φ*Rnt (due to shear):	54.50 kips
Bolt Material:	A325		Maximum Bolt Tension:	49.45 kips
Strength (Fu):	120	ksi	Bolt Interaction Ratio:	90.7% Pass
Yield (Fy):	92	ksi		
BC Diam. (in):	31	BC Override:		

Plate Data

Flange Plate Results

Diameter (in):	33.5	Dia. Override:	Compression Side Plate (Mu/Z):	12.9 ksi
Thickness:	1.5	in	Allowable Φ*Fy:	45.0 ksi
Center Hole Diam.:	18	in	Compr. Plate Interaction Ratio:	28.7% Pass
Yield (Fy):	50	ksi		
Single-Rod B-eff:	8.20	in		
Drain Hole:	1	in. diameter		
Drain Location:	12.75	in. center of pole to cent	ter of drain hole	

SO#: 162371

Site Name: Jenna Dr, WI

5/1/2017 Date:

Round Base Plate and Anchor Rods, per ANSI/TIA 222-G

Pole Data

Diameter: 63.800 in (flat to flat) Thickness: 0.375 in Yield (Fy): 65 ksi # of Sides: 18 "0" IF Round Strength (Fu): 80 ksi

Reactions

Moment, Mu: 5247.61 ft-kips Axial, Pu: 64.31 kips Shear, Vu: 42.37 kips

Anchor Rod Data

Quantity:	16		
Diameter:	2.25	in	Anchor Rod Results
Rod Material:	A615		
Strength (Fu):	100	ksi	Maximum Rod (Pu+ Vu/η):
Yield (Fy):	75	ksi	Allowable Φ*Rnt:
BC Diam. (in):	70.75	BC Override:	Anchor Rod Interaction Rat

u+ Vu/η):

260.0 Kips (per 4.9.9)

231.8 Kips

89.2% Pass action Ratio:

Plate Data

Base Plate Results

Diameter (in):	76.5	Dia. Override:			
Thickness:	2	in	Base Plate (Mu/Z):	40.6 ksi	
Yield (Fy):	50	ksi	Allowable Φ*Fy:	45.0 ksi ((per AISC)
Eff Width/Rod:	12.66	in	Base Plate Interaction Ratio:	90.3% Pass	
Drain Hole:	2.625	in, diameter			

Drain Location: 29.75 in. center of pole to center of drain hole

Center Hole: 51.5 in. diameter

MAT FOUNDATION DESIGN BY SABRE TOWERS & POLES

165' Monopole CENTRAL STATES TOWER Jenna Dr, WI (162371) 5-1-17 TTW

Overall Loads:			
Factored Moment (ft-kips)	5247.61		
Factored Axial (kips)	64.31		
Factored Shear (kips)	42.37		
Bearing Design Strength (ksf)	3.75	Max. Net Bearing Press. (ksf)	3.26
Water Table Below Grade (ft)	999		
Width of Mat (ft)	25	Allowable Bearing Pressure (ksf)	2.50
Thickness of Mat (ft)	1.75	Safety Factor	2.00
Depth to Bottom of Slab (ft)	9	Ultimate Bearing Pressure (ksf)	5.00
Quantity of Bolts in Bolt Circle	16	Bearing Фs	0.75
Bolt Circle Diameter (in)	70.75		
Top of Concrete to Top	00		
of Bottom Threads (in)	60	Minimum Diam Diam atau (ft)	7.00
Diameter of Pier (ft)	8	Minimum Pier Diameter (ft)	7.23
Ht. of Pier Above Ground (ft)		Equivalent Square b (ft)	7.09
Ht. of Pier Below Ground (ft)	7.25	Square Pier? (Y/N)	N
Quantity of Bars in Mat	39		
Bar Diameter in Mat (in)	1		
Area of Bars in Mat (in ²)	30.63		
Spacing of Bars in Mat (in)	7.71	Recommended Spacing (in)	5 to 12
Quantity of Bars Pier	48		
Bar Diameter in Pier (in)	1		
Tie Bar Diameter in Pier (in)	0.625		
Spacing of Ties (in)	12	2	
Area of Bars in Pier (in ²)	37.70	Minimum Pier A _s (in ²)	36.19
Spacing of Bars in Pier (in)	5.74	Recommended Spacing (in)	5 to 12
f'c (ksi)	4.5		
fy (ksi)	60		
Unit Wt. of Soil (kcf)	0.115		
Unit Wt. of Concrete (kcf)	0.15		
Volume of Concrete (yd3)	55.87		
Two-Way Shear Action:			
Average d (in)	17		
ϕv_{c} (ksi)	0.223	v _u (ksi)	0.167
		V _U (Noi)	0.107
$\phi V_{c} = \phi (2 + 4/\beta_{c}) f'_{c}^{1/2}$	0.342		
$\phi v_c = \phi(\alpha_s d/b_o + 2) f'_c^{1/2}$	0.223		
$\phi V_c = \phi 4 f'_c^{1/2}$	0.228		
Shear perimeter, b _o (in)	355.00		
$eta_{ t c}$	1		
One-Way Shear:			
cho may chour			
ϕV_c (kips)	581.6	V _u (kips)	370.1
φν _ε (κιρε) Stability:	301.0	ν _μ (προ)	070.1
-	9520.2	Total Applied M (ft le)	5671.2
Overturning Design Strength (ft-k)	8539.2	Total Applied M (ft-k)	5671.3

Pier Design:

ϕV_n (kips)	844.5	V _u (kips)	42.4
$\phi V_c = \phi 2(1 + N_u/(2000A_g))f'_c^{1/2}b_wd$	844.5		
V _s (kips)	0.0	*** V_s max = 4 $f'_c^{1/2}b_w d$ (kips)	1978.3
Maximum Spacing (in)	7.62	(Only if Shear Ties are Required)	
Actual Hook Development (in)	16.00	Req'd Hook Development I _{dh} (in)	12.02
		*** Ref. To Spacing Requirements ACI 11.5.4.3	

Flexure in Slab:

ϕM_n (ft-kips)	2232.9	M _u (ft-kips)	2221.4
a (in)	1.60		
Steel Ratio	0.00601		
β_1	0.825		
Maximum Steel Ratio (ρ_t)	0.0197		
Minimum Steel Ratio	0.0018		
Rebar Development in Pad (in)	104.46	Required Development in Pad (in)	26.65

Condition	1 is OK, 0 Fails
Maximum Soil Bearing Pressure	1
Pier Area of Steel	1
Pier Shear	1
Interaction Diagram Visual Check	1
Two-Way Shear Action	1
One-Way Shear Action	1
Overturning	1
Flexure	1
Steel Ratio	1
Length of Development in Pad	1
Hook Development	1